
Introduction to Python
Jon Macey jmacey@bournemouth.ac.uk

Python
python is a very flexible programming language, it can be
used in a number of different ways.
Most of our animation packages allow for embedded
python scripting
We can also write complex programs which run stand
alone, and if written correctly can run on all operating
systems

Hello World

print 'Hello World!'1

2

import this
import this1

2

import antigravity

python easter eggs

Lecture Series Outline

Some basic python commands and techniques

Interaction with the operating system

Reading and Writing data to files

Object Orientation in Python

Some basic python for the major animation packages

Getting started
At it’s simplest level python can be used as a simple
command interpreter
We type python into the console and we get a prompt
which lets us enter commands
If nothing else we can use this as a basic calculator
It is also useful for trying simple bits of code which we
wish to put into a larger system

Keywords
The following identifiers are keywords in python and must
not be used as identifiers

and del from not while
as elif global or with
assert else if pass yield
break except import print
class exec in raise
continue finally is return
def for lambda try

Data Types
Python is a dynamically typed language, this means that
variable values are checked at run-time (sometimes
known as “lazy binding”).
All variables in Python hold references to objects, and
these references are passed to functions by value.
Python has 5 standard data types

numbers, string, list, tuple, dictionary

Numbers
Python supports four different numerical types:

int (signed integers)
long (long integers [can also be represented in octal
and hexadecimal])
float (floating point real values)
complex (complex numbers)

numbers
#!/usr/bin/python
a=1
b=2.0
c=35L
d=24+3j

print type(a)

1
2
3
4
5
6
7

Strings
Python strings are immutable
Python allows for either pairs of single or double quotes
Subsets of strings can be taken using the slice operator ([
] and [:]) with indexes starting at 0 in the beginning of the
string and working their way from -1 at the end
The plus (+) sign is the string concatenation operator,
and the asterisk (*) is the repetition operator.

Strings
#!/usr/bin/python

str = 'Hello python'

Prints complete string

print str

Prints first character of the string

1

2

3

4

5

6

7

Lists
A list is the most common of the Python data containers /
types.
It can hold mixed data, include lists of lists
A list is contained within the [] brackets and is analogous
to C arrays
Like a string data is accessed using the slice operator ([]
and [:]) with indexes starting at 0 in the beginning of the
list and working their way to end-1.
The + operator concatenates and the * duplicates

Lists
#!/usr/bin/python

data = [123,"hello",2.45,3+2J]
moreData=[" ","world"]

print data
print data[1]

1
2
3
4
5
6
7

Tuples
A tuple can be thought of as a read only list.
it uses parenthesis to contain the list data

Tuples
#!/usr/bin/python

data = (123,"hello",2.45,3+2J)
moreData=(" ","world")

print data
print data[1]

1
2
3
4
5
6
7

Slice Operators

#!/usr/bin/python

a=range(0,10)
print "a[::2] ",a[::2]
print "a[::-1] ",a[::-1]
print "a[1:10:2] ",a[1:10:2]
print "a[:-1:1] ",a[:-1:1]

1
2
3
4
5
6
7

Python Dictionaries
Python dictionaries are a powerful key / value data
structure which allows the storing of different data types
in the same data set
It is similar to an associative array or hash map in other
programming languages
Many Python API’s use dictionaries to store values and
variable length function parameters

Python Dictionaries
#!/usr/bin/python

colours={
 "red" : [1,0,0],
 "green" : [0,1,0],
 "blue" : [0,0,1],
 "white" : [1,1,1],

1
2
3
4
5
6
7

Type Conversion
Python allows type conversion via a number of functions,
the most common are

Function Description

int(x ,base) Converts x to an integer. base
specifies the base if x is a string

long(x,base) Converts x to an long int. base
specifies the base if x is a
string.

float(x) Converts x to an float.

complex(real,img) Generate a complex number

str(x) Converts x to a string
representation

representation

Type Conversion
#!/usr/bin/python

intText="12"
floatText="0.23123"
intData=123

a=int(intText)

1
2
3
4
5
6
7

Python Membership Operators

There are two membership operators in python “in” and
“not in”
These can be used to test for membership in lists, tuples
and strings

Membership
#!/usr/bin/python

data = (123,"hello",2.45,3+2J)
numbers=[1,2,3,4,5]
print "world" in data
print "text" not in numbers
print 99 in numbers

1
2
3
4
5
6
7

Programming Constructs
Most programming tasks can be split into a combination
of the following elements

Sequences
Selection
Iteration

Whenever I learn a new language I see how these are
represented syntactically as this makes learning the
language easier.

Sequences
As the name suggest a sequence is a fixed set of
instructions
They are always carried out in the same order
With the use of functions we can bundle other sequences
together to make programs easier to read / maintain
The following example shows this in action

Sequences
import turtle
wn = turtle.Screen()
turtle = turtle.Turtle()

turtle.forward(100)
turtle.left(90)

1
2
3
4
5
6

Sequences
#!/usr/bin/python
import turtle
wn = turtle.Screen()
turtle = turtle.Turtle()

1
2
3
4
5
6

Python functions
In python functions are actually values, this means we can
pass functions around like variables
Python functions also allow for multiple return types
(unlike C/C++) this means there is no pass by value /
reference type constructs
Functions are declared using the def keyword and uses
the : to indicate the body of the function which must be
indented

function demo 1
#!/usr/bin/python

def multiReturn(_data) :
 a=_data*1
 b=_data*2
 c=_data*3

1
2
3
4
5
6
7

function demo 2
#!/usr/bin/python

def foo(data) :
 print "foo ",data

def bar(_data) :

1
2
3
4
5
6
7

Selection
selections allow us to make choices
most programming languages have at least the if else
construct
some languages have more
The result of an if operation is a boolean (true / false)
value and code is executed or not depending upon these
value
In python we use the following constructs

Selection
import turtle
wn = turtle.Screen()
turtle = turtle.Turtle()

type = "Triangle"

1
2
3
4
5
6

Python Comparison Operators

given a=10 b=20

Operators Description Example

== equality operator returns true if values are the same (a==b) is
not true

!= not equal operator (a!=b) is
true

<> (now
obsolescent)

Checks if the value of two operands are equal or not (a<>b) is
true

> Checks if the value of le� operand is greater than the value of
right operand

(a>b) is not
true

< Checks if the value of le� operand is less than the value of
right operand

(a>b) is
true

>= Checks if the value of le� operand is greater than or equal to
the value of right operand

(a>=b) is
not true

<= Checks if the value of le� operand is less than or equal to the
value of right operand

(a<=) is
true

Python Logical Operators

given a=10 b=20

Operators Description Example

and Logical and a and b is true

or Logical or a or b is true

not (now obsolescent) Logical not not (a and b) is false

Selection
selections can be embedded to create quite complex
hierarchies of “questions”
This can sometimes make reading code and maintenance
hard especially with the python white space rules as code
quite quickly becomes complex to read
We usually prefer to put complex sequences in functions
to make the code easier to read / maintain

iteration
iteration is the ability to repeat sections of code
python has two main looping constructs

for each
while

for-each loops operate on ranges of data
while loops repeat while a condition is met

iteration
import turtle
wn = turtle.Screen()
turtle = turtle.Turtle()

def Square(_size) :
 turtle.forward(_size)

1
2
3
4
5
6

iteration
import turtle
wn = turtle.Screen()
turtle = turtle.Turtle()

#code taken from http://docs.python.org/dev/library/turtle.html

1
2
3
4
5
6

Recursion
Recursion occurs when a thing is defined in terms of itself
or of its type
in programming this usually done by defining a function
and call the same function within itself
obviously we will need some way of escaping this else it
will go on forever
We use this quite a lot in graphics to traverse hierarchies.

Recursion
import turtle
wn = turtle.Screen()
wn.setup(800,400)
turtle = turtle.Turtle()
turtle.speed(0)
def spiral(n):

1
2
3
4
5
6

looping for x and y
This example shows how we can loop from -10 in the x
and y in increments of 0.5
In C / C++ we would use a for loop

for(float y=-10.0f; y<10.0f; ++y)
{
 for(float x=-10.0f; x<10.0f; ++x)
 {
 std::cout<<x<<' '<<y<<'\n';
 }
}

looping for x and y
#!/usr/bin/python

y=-10.0

while y<=10.0 :
 x=-10.0
 while x<=10.0 :

1
2
3
4
5
6
7

A 'pythonic' loop
#!/usr/bin/python
n =((a,b)for a in range(0,5)for b in range(0,5))
for i in n :
 print i

1
2
3
4
5
6

Built In Functions
2. Built‐in Functions

The Python interpreter has a number of functions built into it that are always available. They are listed here in alphabetical
order.

Built-in Functions
abs() divmod() input() open() staticmethod()

enumerate
#!/usr/bin/python

colours=['red','green','blue','black','white']

c=list(enumerate(colours))
print c
this works on console but not embedded!

1
2
3
4
5
6
7

set / frozenset
A set object is an unordered collection of immutable
values.
Common uses include membership testing, removing
duplicates from a sequence, and computing
mathematical operations such as intersection, union,
difference, and symmetric difference.
sets may be added to, frozen sets may not, however both
types may be compared against each other

set / frozenset
this doesn't work fully on this system best to run in the shell

#!/usr/bin/python

a=range(0,5)
a*=2
print a
b=set(a)
print b

1
2
3
4
5
6
7

lambda
#!/usr/bin/python
import math
a=[1,2,3,4,5]
b=map(lambda x: x+1 , a)
print b

To=[0.0,0.0,0.0]

1
2
3
4
5
6
7

Programming
There are many more constructs and techniques we need

to apply to create complex programs

but for now the basic techniques illustrated will be used in

most of our code

For the rest of the lecture we are going to look at how we

can execute our own scripts within the different Operating

systems we use

A trip back in time

Early electronic computing (pre 80’s) didn’t have the GUIs
we have today.
This meant that all interactions with the computer were
done with typing into a terminal.
Most modern operating systems still have the option to do
this
In some cases this method is quicker than using the GUI
(but does require some additional knowledge)

- If we wish to rename every file in the tree

opposite in a GUI we would have to click on every

file and type the new name

- Some Operating Systems allow the automation

of GUI tasks but this is still time consuming.

- The answer in most cases is to use another GUI

program or to write a script

- Most scripting languages let us access the

underlying os commands to do this

Example

The Shell
In windows we can access the command prompt (shell) by
typing cmd in the start menu
In linux we can open a shell by clicking on the shell icon
(but if you a real linux user there will be one open all the
time!)
We can then start typing commands, however windows
and Unix have different commands for the same action

Shell Commands

Command's Purpose MS-DOS Linux Basic Linux Example

Copies files copy cp cp thisfile.txt /home/thisdirectory

Moves files move mv mv thisfile.txt /home/thisdirectory

List files dir ls ls

Clears screen cls cls clear

Deletes files del rm rm thisFile.txt

Finds a string of text in a file find grep grep ImageName *.txt

Creates a directory mkdir mkdir mkdir images

Shell Commands

Command's Purpose MS-DOS Linux Basic Linux Example

View a file (in shell) more less more text.txt (can use
less as well)

Renames a file ren mv mv this.txt that.txt

Displays your location in the file system chdir pwd pwd

Changes directories with a specified path
(absolute path)

cd
pathname

cd
pathname

cd
/directory/directory

Changes directories with a relative path cd .. cd .. cd ../images/

Environment Variables
When we open a shell we are placed in our home directory
This place is stored in an Environment variable called

$HOME on unix and mac
%HOMEPATH% on windows

echo $HOME
echo %HOMEPATH%

/Users/jmacey
\Users\jmacey

Environment Variables
Environment variables are global system variables
available to all processes (i.e. programs)
Most operating systems have a number of default values
set which programs can query to set the way things
operate.
Users can also se their own environment variables to
customise how things work.
It is not uncommon for so�ware packages to install their
own environment variables when the program is installed.

Environment Variables
The PATH environment variable allows us to set a
directory where the OS will look for scripts and programs
We can add a local directory to our system which contains
user scripts which can be executed by the user
The configuration is different for both Windows and Unix

Unix Environment variables
The default shell used in the linux studios is the bash shell
(Bourne again Shell)
To set environment variable in this shell we use a file
called .bashrc which is hidden in the home directory
if you type gedit ~/.bashrc you can access it
export PATH=$PATH:$HOME/scripts

if you re-open the shell this will be made permanent
Now any program placed in this directory may be found
and executed

Windows Environment Variables
Setting environment variables in windows is different
from Unix as we have to use the GUI
In our studios we can access them from the control panel
and students have admin rights to do so
The following panels show the way to do this

- Select the system variable
called Path

- Click on the edit button and
the following dialog will be
displayed

Windows Environment Variables

Windows Environment Variables

At the end of the Variable value line add the following
;%HOMEDRIVE%%HOMEPATH%scripts

The ; is a separator for the different values

The scripts directory
Now we have told the system to look in the scripts
directory for any scripts to run we need to create this
directory
To do this in the console we do the following where the
mkdir command makes a directory
// Windows
cd %HOMEPATH%
mkdir scripts

// linux
cd
mkdir scripts

testing
#!/usr/bin/python

print 'this is working'

Type the above in an editor (or your choice) and save it in
the scripts directory as hello.py
In unix issue the following command in the same directory
chmod 777 hello.py

now from any directory you should be able to type
hello.py to run the script

os.environment
These need to be run on a machine and not online

#!/usr/bin/python

import os

for env in os.environ :

 print "Variable = %s \nValue = %s"%(env, os.environ.get(env))

#!/usr/bin/python

import os

if (os.environ.get("PROJECTDIR") == "/tmp") :

 print "project ok"

else :

 print "project not ok"

The main function
The main function is a special function for most
programming languages
It is the first function to be executed and is the entry point
for most programs
The main function is usually passed a set of global system
variables called arguments
These are available through the life of the program and
are a good way of passing values to a program

Python main
#!/usr/bin/python
import sys

def foo(argv=None):
 print "in foo function"
 print "my name is ",__name__

if __name__ == "__main__":
 sys.exit(foo())

#!/usr/bin/python
import sys
import foo

def main(argv=None):
 print "in main function"
 print __name__
 foo.foo()

if __name__ == "__main__":
 sys.exit(main())

Command Line arguments
When a program is executed form the command line the
whole line typed is passed to the program using the
variable argv
argv is a text string array split based on white space
The following program show how we can print these
values out

arguments
#!/usr/bin/python
import sys

def main(argv=None):
 if argv is None:
 argv = sys.argv
 for args in argv :
 print args

if __name__ == "__main__":
 sys.exit(main())

./arg.py hello this is a command line -f -a 1 2 3
hello
this
is
a
command
line
-f
-a
1
2
3

getopt
The getopt function is used to process a list of arguments
in the form
-l or -vfx will be split into -v -f -x
-f [optional argument]
--help (know as a long option)
The programmer passes a list of these options and the
getopt function will split them (any additional command
line values will be ignored)

getopt
#!/usr/bin/python

import getopt, sys

def usage() :

 print "to use the program pass -l for long mode"

 print "-f [name] for file mode"

class Usage(Exception):

 def __init__(self, msg):

 self.msg = msg

 print "Unknown Option\n\n"

 usage()

def main(argv=None):

The string data type
Python has a built in string data type which allows us to
manipulate text
Python has the ability to handle both ASCII and Unicode
string.
For all the examples we are going to work with we will be
using only ASCII strings
The following example shows some basic string
manipulation

demo
#!/usr/bin/python

declare a string

File = "Pass.0001.exr"

print File

1
2
3
4
5
6
7

Format Specifiers
In the previous example we used the % format specifier to
add to a text string the numeric value for the length.
This is similar to the C syntax for printing values.
The table on the next page shows the available specifiers

Format Specifiers
Format String Meaning Data Type

%d Integer Decimal int

%o Octal Decimal int

%x Hexadecimal int

%f Floating Point (Decimal Notation) float

%e Floating Point (1.E notation) float

%c First Character or argument is printed char

%s Argument is taken to be a string string

%r convert argument to python object any python type

format
#!/usr/bin/python

declare a string

Name="BeautyPass.%04d.exr"

for i in range(0,4) :

1
2
3
4
5
6
7

Accessing the Filesystem
The python contains a number of functions
which allow us to access the file system
This module allows us to create files and directories
Change directories
List the contents of a directory
and much more

os module

Accessing the filesystem
#!/usr/bin/python

import os
get our current directory
CWD = os.getcwd()
print CWD
make a directory
os.mkdir("TestDir")
change to the new directory
os.chdir("TestDir")
NewDir = os.getcwd()
print NewDir
print os.listdir(CWD)
change back to CWD
os.chdir(CWD)
remove the dir we made
os.rmdir("TestDir")

Listing Files in a directory
The os.listdir() function will return a list of all the files in
the current directory
If we need to identify only a certain type of file we need
search the string for the type we are looking for
The following example identifies only exr files based on
the .exr extension

os.listdir()
#!/usr/bin/python

import os

Files=os.listdir(".")

for file in Files :
 if file.endswith(".exr") :
 print file

Rename.py
The following script uses the previous examples to search
for files in the current directory beginning with “name”
It will then rename the files with the name passed in with
the 2nd argument

Rename.py
#!/usr/bin/python

import os

import shutil

import sys

def Usage() :

 print "Rename OldName NewName"

def main(argv=None):

check to see if we have enough arguments

 if len(sys.argv) !=3 :

 Usage()

 else :

 # get the old and new file names

 OldName=sys.argv[1]

 NewName=sys.argv[2]

shutil
The shutil module offers a number of high-level
operations on files and collections of files.
As different operating systems use different commands
this is a good way of doing operating system independent
operations
This allows us to write scripts which will work on all
operating systems

A More Advanced example
The following example allows us to reformat files
structured like Name.xxx.ext
It has the option to resize the padding .xxx. values to any
user specified length (default 4)
To filter file names so only certain files are converted
To rename the file as part of the conversion

repad.py
#!/usr/bin/python

from os import *

from os.path import *

import shutil

import os, commands, getopt, sys

def usage() :

 print "**"

 print "repad.py re-number file sequences"

 print "Version 1.0 by jmacey@bmth.ac.uk"

 print "**"

 print "At present it only works for files of the format Name.###.ext\n"

 print "The script will process all files it finds in the current directory "

 print "If only certain files are to be processed use the -f Filter Option"

 print "\nOptions :\n"

 print "-p --pad set the pad level e.g. -p 9 will give the output Example.000000001.tiff"

Files
One of the simplest way of communicating between

different packages and different programs is by the use of

text files.

Reading and writing files in python is very simple and

allows us to very quickly output elements from one

so�ware package to another in an easily readable hence

debuggable way.

Files

Stream I/O

When a file is opened a file descriptor is returned and this

file descriptor is used for each subsequent I/O operation,

when any operation is carried out on the file descriptor its

is known as a stream.

When a stream is opened the stream object created is

used for all subsequent file operations not the file name.

The open function
open a file for reading
FILE=open('test.txt','r')

open a file for writing
FILE=open('text.txt',''w')

The open function takes two parameters
The fist is a String for the name of the file to open
The 2nd is the open mode 'r' for reading from a file 'w'
for writing to a file

The close method
FILE.close()

Once a file has been finished with it must be closed.

This is especially important if we are writing to a file as the

OS may be storing these values in memory.

The close function actually forces the OS to flush the file

to disk and closes thing properly

Example
#!/usr/bin/python

import os
import sys

def Usage() :
 print "ReadFile [filename]"

def main(argv=None):
check to see if we have enough arguments
 if len(sys.argv) !=2 :
 Usage()
 else :
 # get the old and new file names
 FileName=sys.argv[1]
 if (os.path.exists(FileName)) :
 FILE=open(FileName,"r")

write file
#!/usr/bin/python

import os
import shutil
import sys
import the uniform function from random
from random import uniform

def Usage() :
 print "WriteData [filename] Number"

def main(argv=None):
check to see if we have enough arguments
 if len(sys.argv) !=3 :
 Usage()
 else :
 # get the file name to write to

output
Point -8.079503 -5.887453 0.477799
Point -8.509921 -1.826855 6.271168
Point 5.899356 9.357611 6.468166
Point 8.883614 -7.286649 -7.365122
Point -6.063683 -4.825969 -3.024902
Point -0.119126 5.620598 5.814827
Point 8.060026 2.640244 -4.197079
Point 8.952118 1.571210 8.069305
Point -9.708913 5.454307 2.763587
Point -2.809199 -5.292178 3.994426
Point 2.788986 4.434073 8.763425

Reading the data
The following example reads the data from the previous
program and prints it out.
As the data is stored on a per line basis we can read it in
one hit and then process it

ReadData
#!/usr/bin/python

import os
import shutil
import sys
import the uniform function from random
from random import uniform

def Usage() :
 print "ReadData [filename] "

def main(argv=None):
check to see if we have enough arguments
 if len(sys.argv) !=2 :
 Usage()
 else :
 # get the file name to write to

Object Orientation

Python is fully object−oriented and supports class
inheritance
Defining a class in Python is simple as with functions,
there is no separate interface definition (as used in
languages like c++)
A Python class starts with the reserved word class,
followed by the class name.
Technically, that's all that's required, since a class doesn't
need to inherit from any other class.

Python Classes
Typically a Python class is a self contained .py module
with all the code for that module contained within it.
The class may also have special methods to initialise the
data and setup any basic functions
class ClassName :
 <statement 1>
 .
 .
 .
 <statement N>

A Colour Class
#!/usr/bin/python

class Colour :
 ' a very simple colour container'
 def __init__(self,r=0.0,g=0.0,b=0.0,a=1.0) :
 'constructor to set default values'
 self.r=r
 self.g=g
 self.b=b
 self.a=a

 def debugprint(self) :
 ' method to print out the colour data for debug'
 print '[%f,%f,%f,%f]' %(self.r,self.g,self.b,self.a)

 def mix(self,colour,t) :

Colour Test
#!/usr/bin/python

from Colour import *

red=Colour()
red.r=1.0
red.debugprint()

./ColourTest.py
[1.000000,0.000000,0.000000,1.000000]

__init__
Is the python class initialiser, at it’s simplest level it can be
thought of as a constructor but it isn’t!
The instantiation operation (“calling” a class object)
creates an empty object.
The __init__ method allows use to set an initial state
The actual process is the python constructor is __new__
Python uses automatic two-phase initialisation
__new__ returns a valid but (usually) unpopulated
object,
which then has __init__ called on it automatically.

methods
The class methods are defined within the same
indentation scope of the rest of the class
There is no function overloading in Python, meaning that
you can't have multiple functions with the same name but
different arguments
The last method defined with a name will be used

self
There are no shorthands in Python for referencing the
object’s members from its methods the method function
is declared with an explicit first argument representing
the object, which is provided implicitly by the call.
By convention the first argument of a method is called
self.
The name self has absolutely no special meaning to
Python.
Note, however, that by not following the convention your
code may be less readable to other Python programmers,
and it is also conceivable that a class browser program
might be written that relies upon such a convention.

encapsulation
In python there is no private or protected encapsulation
We can access all class attributes using the . operator
We can also declare instance variables where ever we like
in the methods (for example self.foo=10 in a method
will be available once that method has been called)
By convention it would be best to declare all instance
variables (attributes) in the __init__ method

Making attributes private
Whilst python doesn’t support private encapsulation we
can fake it using name mangling
If we declare the class attributes using __ they will be
mangled and hidden from the outside of the class
This is shown in the following example

Colour Private
#!/usr/bin/python

class ColourPrivate :
 ' a very simple colour container'
 def __init__(self,r=0.0,g=0.0,b=0.0,a=1.0) :
 'constructor to set default values'
 self.__r=r
 self.__g=g
 self.__b=b
 self.__a=a

 def debugprint(self) :
 ' method to print out the colour data for debug'
 print '[%f,%f,%f,%f]' %(self.__r,self.__g,self.__b,self.__a)

 def setR(self,r) :
 self.__r=r

Private Test
#!/usr/bin/python

from ColourPrivate import *

red=ColourPrivate()
red.__r=1.0
print red.getR()
red.debugprint()
red.setR(1.0)
print red.getR()

./ColourPTest.py
0.0
[0.000000,0.000000,0.000000,1.000000]
1.0

Attribute Access
#!/usr/bin/python

class Attr :

 def __init__(self,x=1.0,y=1.0) :
 self.x=x
 self.y=y

 def __str__(self) :
 ''' this method will return our data when doing something like print v '''
 return "[%r,%r]" %(self.x,self.y)

 def __getattr__(self,name) :
 print "the attrib %r doesn't exist" %(name)

 def __setattr__(self,name,value) :
trying to set attribute 'x'=1
trying to set attribute 'y'=1
[1,1]
the attrib 'w' doesn't exist
None
trying to set attribute 'w'=99
99
trying to delete 'w'

__del__
__del__ is analogous to the destructor
It defines behaviour for when an object is garbage
collected
As there is no explicit delete in python it is not always
called
Be careful, however, as there is no guarantee that
__del__ will be executed if the object is still alive when
the interpreter exits
__del__ can't serve as a replacement for good coding
practice

del test
#!/usr/bin/python

class DelTest :
 def __init__(self) :
 'constructor to set default values'
 print "init"

 def __del__(self) :
 print "deleted"

python
>>> from del import *
>>> d=DelTest()
init
>>> d=1
deleted
>>>

vec3 class
The following examples are going to use the following
Vec3 class definition
class Vec3 :
 ''' a simple Vec3 class for basic 3D calculations etc'''
 def __init__(self,x=0.0,y=0.0,z=0.0) :
 self.x=x
 self.y=y
 self.z=z

 def __str__(self) :
 ''' this method will return our data when doing something like print v '''
 return "[%f,%f,%f]" %(self.x,self.y,self.z)

 def __eq__(self,rhs) :
 ''' equality test'''
 return self.x == rhs.x and self.y == rhs.y and self.z == rhs.z

 def __ne__(self,rhs) :

Comparison Operators

__cmp__(self,other) is the default comparison
operator
It actually implements behavior for all of the comparison
operators (<, ==, !=, etc.)
It is however best to define your own operators using the
individual operator overloads as shown in the next code
segment

Comparison Operators

equality operator ==
__eq__(self,rhs)
inequality operator !=
__ne__(self,rhs)
less than operator <
__lt__(self,rhs)
greater than operator >=
__gt__(self,rhs)
less or equal than operator <=
__le__(self,rhs)
greater than or equal operator >=
__ge__(self,rhs)

__str__
is used with the built in print function, we can just format
the string to do what we want.
There is also a __repr__ method used to print a human
readable presentation of an object.

Numeric Operators

The numeric operators are fairly easy, python supports
the following operators which take a right hand side
argument.
__add__(self, other)
__sub__(self, other)
__mul__(self, other)
__floordiv__(self, other)
__div__(self, other)
__truediv__(self, other) # python 3
__mod__(self, other)
__divmod__(self, other)
__pow__ # the ** operator
__lshift__(self, other) #<<
__rshift__(self, other) #>>
__and__(self, other) # bitwise &
__or__(self, other) # bitwise |
__xor__(self, other) # ˆ operator

Reflected Operators

In the previous examples the operators would work like
this Vec3 * 2 to make operators that work the other
way round we use reflected operators
In most cases, the result of a reflected operation is the
same as its normal equivalent, so you may just end up
defining __radd__ as calling __add__ and so on.

Reflected Operators

__radd__(self, other)
__rsub__(self, other)
__rmul__(self, other)
__rfloordiv__(self, other)
__rdiv__(self, other)
__rtruediv__(self, other) # python 3
__rmod__(self, other)
__rdivmod__(self, other)
__rpow__ # the ** operator
__rlshift__(self, other) #<<
__rrshift__(self, other) #>>
__rand__(self, other) # bitwise &
__ror__(self, other) # bitwise |
__rxor__(self, other) # ˆ operator

Augmented Assignment
These are the += style operators

__iadd__(self, other)
__isub__(self, other)
__imul__(self, other)
__ifloordiv__(self, other)
__idiv__(self, other)
__itruediv__(self, other) # python 3
__imod__(self, other)
__idivmod__(self, other)
__ipow__ # the ** operator
__ilshift__(self, other) #<<
__irshift__(self, other) #>>
__iand__(self, other) # bitwise &
__ior__(self, other) # bitwise |
__ixor__(self, other) # ˆ operator

Class Representation
There are quite a few other special class methods that can
be used if required
__unicode__(self)
__format__(self, formatstr)
__hash__(self)
__nonzero__(self)
__dir__(self)
__sizeof__(self)

Custom Containers
There are a number of special class methods that allow
the defining of our own containers in python
The first thing we need to decide is if we need a mutable
or immutable container.
For an immutable container we only need to define
methods for the len() and access operators []
For mutable we need to be able to set and delete items in
the container.
Finally we can create iterators if we wish as well.

Custom Containers
__len__(self)
__getitem__(self, key)
__setitem__(self, key, value)
__delitem__(self, key)
__iter__(self)
__reversed__(self)
__contains__(self, item)
__contains__ (self,item)
__missing__(self, key)

Example
class MyContainer :
 ''' a very simple container class '''
 def __init__(self,data=None) :
 if data is None :
 self.data=[]
 else :
 self.data=data

 def __str__(self) :
 ''' method to print out the container contents'''
 return ','.join(map(str, self.data))

 def __len__(self) :
 ''' return the length of the data'''
 return len(self.data)

 def __getitem__(self,index) :

Test
 #!/usr/bin/python

from MyContainer import *

c=MyContainer([1,2,3,4,5,"string","c"])
print c
print "length of c is ",len(c)
c[2]="new value"
print "c[2] is ",c[2]
del c[2]
print "deleted item 2 ",c
print "using the iterator"
for i in c :
 print i

print "using reverse iterator"

output
1,2,3,4,5,string,c lengthofcis 7
c[2] is new value
deleted item 2 1,2,4,5,string,c using the iterator
1
2
4
5
string
c
using reverse iterator
c
string
5
4
2
1
1,2,4,5,string,c,999

Composition and Aggregation
To build more complex classes we can use composition,
we just need to import the correct module

Point3

Colour

Sphere

Colour.py
class Colour:
 # ctor to assign values
 def __init__(self, r=0, g=0, b=0,a=1):
 self.r=float(r)
 self.g=float(g)
 self.b=float(b)
 self.a=float(a)

 # debug print function to print vector values
 def __str__(self):
 return '[%f,%f,%f,%f]' %(self.r,self.g,self.b,self.a)

Point3.py
class Point3:
 # ctor to assign values
 def __init__(self, x=0.0, y=0.0, z=0.0):
 self.x=float(x)
 self.y=float(y)
 self.z=float(z)
 # debug print function to print vector values
 def __str__(self):
 return '[%f,%f,%d]' %(self.x,self.y,self.z)

Sphere.py
from Point3 import Point3
from Colour import Colour

class Sphere:
 # ctor to assign values
 def __init__(self, pos=Point3(), colour=Colour(), radius=1,name=""
 self.pos=pos
 self.colour=colour
 self.radius=radius
 self.name=name

 def Print(self):
 print "Sphere %s" %(self.name)
 print "Radius %d" %(self.radius)
 print "Colour",

Test
#!/usr/bin/python

from Sphere import Point3,Colour,Sphere

#Pos, colour, radius,name
s1=Sphere(Point3(3,0,0),Colour(1,0,0,1),2,"Sphere1")
s1.Print()

p1=Point3(3,4,5)
c1=Colour(1,1,1,1)
s2=Sphere(p1,c1,12,"New")
s2.Print()

s3=Sphere(Point3(3,0,2),Colour(1,0,1,1),2,"Sphere2")
s3.Print()
./SphereTest.py
Sphere Sphere1
Radius 2
Colour [1.000000,0.000000,0.000000,1.000000]
Position [3.000000,0.000000,0]
Sphere New
Radius 12
Colour [1.000000,1.000000,1.000000,1.000000]
Position [3.000000,4.000000,5]

Position [3.000000,4.000000,5]

Sphere Sphere2
Radius 2
Colour [1.000000,0.000000,1.000000,1.000000]
Position [3.000000,0.000000,2]

Inheritance
in python inheritance is generated by passing in the
parent class(es) to the child class
This will allow all the base class functions to be accessed
or override them if defined in the child
The first example shows a basic inheritance

example
#!/usr/bin/python

class Parent(object):

 def foo(self):
 print "foo called self=%s" %(self)

1
2
3
4
5
6
7

over ride
#!/usr/bin/python

class Parent(object):

 def foo(self):
 print "foo called self=%s" %(self)

1
2
3
4
5
6
7

over ride constructor
#!/usr/bin/python

class Parent(object):

 def __init__(self,a) :
 self.a=a

1
2
3
4
5
6
7

References
http://vt100.net/docs/tp83/chapter5.html
http://www.artima.com/weblogs/viewpost.jsp?thread=4829
http://www.tutorialspoint.com/python/python_variable_types.htm

References

)
http://en.wikipedia.org/wiki/Environment_variable
http://en.wikipedia.org/wiki/Mainfunction(programming)
http://docs.python.org/library/shutil.html
http://www.devshed.com/c/a/Python/String-
Manipulation/
http://docs.python.org/library/string.html
http://www.rafekettler.com/magicmethods.html

