
Introduction to Python
Jon Macey	

jmacey@bournemouth.ac.uk	

http://nccastaff.bournemouth.ac.uk/jmacey/

mailto:jmacey@bournemouth.ac.uk
http://nccastaff.bournemouth.ac.uk/jmacey/

Python

• python is a very flexible programming language, it can be used in a number of
different ways.	

• We can also write complex programs which run standalone, and if written
correctly can run on all operating systems

import this

The Zen of Python, by Tim Peters
Beautiful is better than ugly. 
Explicit is better than implicit. 
Simple is better than complex. 
Complex is better than complicated. 
Flat is better than nested. 
Sparse is better than dense. 
Readability counts. 
Special cases aren't special enough to break the rules. 
Although practicality beats purity. 
Errors should never pass silently. 
Unless explicitly silenced. 
In the face of ambiguity, refuse the temptation to guess. There should be one and preferably only one obvious way to do it. 
Although that way may not be obvious at first unless you're Dutch. 
Now is better than never. 
Although never is often better than right now.  
If the implementation is hard to explain, it's a bad idea. 
If the implementation is easy to explain, it may be a good idea. 
Namespaces are one honking great idea -- let's do more of those!

import antigravity

http://xkcd.com/353/

http://xkcd.com/353/

Lecture Series Outline

• Some basic python commands and techniques	

• Interaction with the operating system	

• Reading and Writing data to files	

• Object Orientation in Python	

• External packages and ideas

Getting started

• At it’s simplest level python can be used as a simple command interpreter	

• We type python into the console and we get a prompt which lets us enter
commands	

• If nothing else we can use this as a basic calculator	

• It is also useful for trying simple bits of code which we wish to put into a
larger system

Keywords

• The following identifiers are keywords in python and must not
be used as identifiers

and del from not while!
as elif global or with!
assert else if pass yield!
break except import print!
class exec in raise!
continue finally is return!
def for lambda try!

Data Types

• Python is a dynamically typed language, this means that variable
values are checked at run-time (sometimes known as “lazy
binding”). 	

• All variables in Python hold references to objects, and these
references are passed to functions by value.	

• Python has 5 standard data types	

• numbers, string, list, tuple, dictionary

Numbers

• Python supports four different
numerical types:	

• int (signed integers)	

• long (long integers [can also be
represented in octal and
hexadecimal])	

• float (floating point real values)	

• complex (complex numbers)

1 #!/usr/bin/python

2
3 a=1

4 b=2.0

5 c=35L

6 d=24+3j

7
8 print type(a)

9 print type(b)

10 print type(c)

11 print type(d)

<type 'int'>	

<type 'float'>	

<type 'long'>	

<type 'complex'>

numbers.py

Strings
• Python strings are immutable	

• Python allows for either pairs of single
or double quotes	

• Subsets of strings can be taken using
the slice operator ([] and [:]) with
indexes starting at 0 in the beginning
of the string and working their way
from len-1 at the end	

• The plus (+) sign is the string
concatenation operator, and the
asterisk (*) is the repetition operator.

1 #!/usr/bin/python
2
3 str = 'Hello python'
4
5 # Prints complete string
6 print str
7 # Prints first character of the string
8 print str[0]
9 # Prints characters starting from 3rd to 6th

10 print str[2:5]
11 # Prints string starting from 3rd character
12 print str[2:]
13 # Prints string two times
14 print str * 2
15 # Prints concatenated string
16 print str + " with added text"

strings.py

The string data type

• Python has a built in string data type which allows us to manipulate text	

• Python has the ability to handle both ASCII and Unicode string. 	

• For all the examples we are going to work with we will be using only
ASCII strings	

• The following example shows some basic string manipulation

1 #!/usr/bin/python
2
3 # declare a string
4
5 File = "Pass.0001.exr"
6
7 print File
8 print "The string has %d elements " %(len(File))
9

10 # we can treat a string like a list
11 for i in range(0,len(File)) :
12 print File[i]
13 # we can find the index of a particular element
14 print File.find(".ex")
15 # we can split the string based on a character
16 StringList = File.split(".")
17 print StringList;
18 # we can replace elements
19 File=File.replace("Pass","BeautyPass")
20 print File
21 # see if file starts with a particular string
22 print File.startswith("BeautyPass")
23 # see if file ends with a particular string
24 print File.endswith(".exr")

1 Pass.0001.exr
2 The string has 13 elements
3 P
4 a
5 s
6 s
7 .
8 0
9 0

10 0
11 1
12 .
13 e
14 x
15 r
16 9
17 ['Pass', '0001', 'exr']
18 BeautyPass.0001.exr
19 True
20 True

String1.py

Format Specifiers

• In the previous example we used the % format specifier to add to a
text string the numeric value for the length.	

• This is similar to the C syntax for printing values.	

• The table on the next page shows the available specifiers

Format String Meaning Data Type

%d Integer Decimal int,

%o Octal Decimal int

%x Hexadecimal int

%f Floating Point (Decimal Notation) float

%e Floating Point (1.E notation) float

%c First Character or argument is printed char

%s Argument is taken to be a string string

%r convert argument to python object any python type

1 #!/usr/bin/python
2
3 # declare a string
4
5 Name="BeautyPass.%04d.exr"
6 # add the index value
7 for i in range(0,4) :
8 print Name %(i)
9

10 Name="Pass"
11 frame=2
12 Ext="tiff"
13 # build a new string from components
14 FullName ="%s.%04d.%s" %(Name,frame,Ext)
15 print FullName

1 BeautyPass.0000.exr
2 BeautyPass.0001.exr
3 BeautyPass.0002.exr
4 BeautyPass.0003.exr
5 Pass.0002.tiff

FormatString.py

Lists
• A list is the most common of the Python data

containers / types. 	

• It can hold mixed data, include lists of lists	

• A list is contained within the [] brackets and is
analogous to C arrays	

• Like a sting data is accessed using the slice
operator ([] and [:]) with indexes starting at 0
in the beginning of the list and working their way
to len-1.	

• The + operator concatenates and the *
duplicates

1 #!/usr/bin/python

2
3 data = [123,"hello",2.45,3+2J]

4 moreData=[" ","world"]

5
6 print data

7 print data[1]

8 print data[2:]

9
10 hello=data[1]+moreData[0]+moreData[1]

11 print hello

./list.py 	

[123, 'hello', 2.4500000000000002, (3+2j)]	

hello	

[2.4500000000000002, (3+2j)]	

hello world

 list.py

Tuples
• A tuple can be thought of as a read only list.	

• it uses parenthesis to contain the list data

1 #!/usr/bin/python

2
3 data = (123,"hello",2.45,3+2J)

4 moreData=(" ","world")

5
6 print data

7 print data[1]

8 print data[2:]

9
10 hello=data[1]+moreData[0]+moreData[1]

11 print hello

12 data+=moreData

./tuple.py 	

(123, 'hello', 2.4500000000000002, (3+2j))	

hello	

(2.4500000000000002, (3+2j))	

hello world	

Traceback (most recent call last):	

 File "./tuple.py", line 13, in <module>	

 data+="more"	

TypeError: can only concatenate tuple (not "str") to tuple

tuple.py

more on slice operators

#!/usr/bin/python

a=range(0,10)
print "a[::2] ",a[::2]
print "a[::-1] ",a[::-1]
print "a[1:10:2] ",a[1:10:2]
print "a[:-1:1] ",a[:-1:1]
del a[::2]
print "del a[::2] ",a
print range(10)[slice(0, 5, 2)]

a[::2] [0, 2, 4, 6, 8]	

a[::-1] [9, 8, 7, 6, 5, 4, 3, 2, 1, 0]	

a[1:10:2] [1, 3, 5, 7, 9]	

a[:-1:1] [0, 1, 2, 3, 4, 5, 6, 7, 8]	

del a[::2] [1, 3, 5, 7, 9]	

[0, 2, 4]

slice.py

slice.py

Python Dictionaries

• Python dictionaries are a powerful key / value data structure which
allows the storing of different data types in the same data set	

• It is similar to an associative array or hash map in other programming
languages	

• Many Python API’s use dictionaries to store values and variable length
function parameters

1 #!/usr/bin/python

2
3 Dictionary={

4 "red":[1.0,0.0,0.0],

5 "green":[0.0,1.0,0.0],

6 "blue":[0.0,0.0,1.0],

7 "white":[1.0,1.0,1.0],

8 "black":[0.0,0.0,0.0]

9 }

10
11 print Dictionary.get("red")

12 print Dictionary.get("white")

13 print Dictionary.get("purple")

1 [1.0, 0.0, 0.0]

2 [1.0, 1.0, 1.0]

3 None

Create a dictionary of 	

colour lists	

“key”:[r,g,b]

Use the .get(“key”)
method to find the value

!
 note “None” returned 	

 if “key” not found	

Type Conversion
• Python allows type conversion via a number of functions, the most

common are

Function Description

int(x ,base) Converts x to an integer. base specifies the base if x is a string.

long(x,base) Converts x to an long int. base specifies the base if x is a
string.

float(x) Converts x to an float.

complex(real,img) Generate a complex number

str(x) Converts x to a string representation

1 #!/usr/bin/python

2
3 intText="12"

4 floatText="0.23123"

5 intData=123

6
7 a=int(intText)

8 b=float(floatText)

9 text=str(intData)

10
11 print a,type(a)

12 print b,type(b)

13 print text,type(text)

./convert.py 	

12 <type 'int'>	

0.23123 <type 'float'>	

123 <type 'str'>

convert.py

Python Membership Operators

• There are two membership operators in python “in” and “not in”	

• These can be used to test for membership in lists, tuples and
strings

1 #!/usr/bin/python

2
3 data = (123,"hello",2.45,3+2J)

4 numbers=[1,2,3,4,5]

5 print "world" in data

6 print "text" not in numbers

7 print 99 in numbers

8 print 2 in numbers

False	

True	

False	

True

membership.py

Programming Constructs

• Most programming tasks can be split into a combination of the following
elements	

• Sequences	

• Selection	

• Iteration	

• Whenever I learn a new language I see how these are represented syntactically
as this makes learning the language easier.

Sequences

• As the name suggest a sequence is a fixed set of instructions 	

• They are always carried out in the same order	

• With the use of functions we can bundle other sequences together to make
programs easier to read / maintain	

• The following example shows this in action

1 #!/usr/bin/python

2
3 from turtle import

*

4
5 forward(100)

6 left(90)

7 forward(100)

8 left(90)

9 forward(100)

10 left(90)

11 forward(100)

12 done()

1 #!/usr/bin/python

2
3 from turtle import

*

4
5 def Square(_size) :

6 forward(_size)

7 left(90)

8 forward(_size)

9 left(90)

10 forward(_size)

11 left(90)

12 forward(_size)

13
14 penup()

15 goto(10,20)

16 pendown()

17 Square(40)

18
19 penup()

20 goto(50,200)

21 pendown()

22 Square(100)

23
24 penup()

25 goto(300,100)

26 pendown()

27 Square(200)

28
29 done()

sequence.py
sequence2.py

Python White Space rules
• Python uses white space to delimit scope, it can use either tabs or spaces	

• Mixing the two can become problematic however we can still do the
following	

!

!

!

!

!

• for an in depth analysis see http://www.secnetix.de/olli/Python/
block_indentation.hawk

1 >>> foo = [

2 ... 'some string',

3 ... 'another string',

4 ... 'short string'

5 ...]

6 >>> print foo

7 ['some string', 'another string', 'short string']

8
9 >>> bar = 'this is ' \

10 ... 'one long string ' \

11 ... 'that is split ' \

12 ... 'across multiple lines'

13 >>> print bar

14 this is one long string that is split across multiple lines

http://www.secnetix.de/olli/Python/block_indentation.hawk

Python functions

• In python functions are actually values, this means we can pass functions
around like variables	

• Python functions also allow for multiple return types (unlike C/C++) this
means there is no pass by value / reference type constructs	

• Functions are declared using the def keyword and uses the : to indicate the
body of the function which must be indented

1 #!/usr/bin/python

2
3
4 def multiReturn(_data) :

5 a=_data

*

1

6 b=_data

*

2

7 c=_data

*

3

8 return a,b,c

9
10
11 data=["test","values"]

12
13 a,b,c=multiReturn(data)

14 print a

15 print b

16 print c

['test', 'values']	

['test', 'values', 'test', 'values']	

['test', 'values', 'test', 'values', 'test', 'values']

1 #!/usr/bin/python

2
3
4 def foo(_data) :

5 print "foo ",_data

6
7 def bar(_data) :

8 print "bar ",_data

9
10
11 functions=[foo,bar]

12
13 functions[0](12)

14 functions[1](12)

15 functions[0](99)

16 functions[1](88)

foo 12	

bar 12	

foo 99	

bar 88

selection
• selections allow us to make choices	

• most programming languages has at least the if else construct	

• some languages have more	

• The result of an if operation is a boolean (true / false) value and code is
executed or not depending upon these value	

• In python we use the following constructs

1 #!/usr/bin/python

2
3 from turtle import

*

4
5 type = ""

6
7 if type == "Square" :

8 forward(100)

9 left(90)

10 forward(100)

11 left(90)

12 forward(100)

13 left(90)

14 forward(100)

15 done()

16
17 elif type=="Triangle" :

18 forward(100)

19 right(120)

20 forward(100)

21 right(120)

22 forward(100)

23 done()

24
25 else :

26 print "nothing selected"

27

 all code after the :	

is indented with a tab and

executed	

if statement True

elif : is an else if

else is a “catch all”	

if the others fail

Python Comparison Operators

Operators Description Example

== equality operator returns true if values are
the same

(a==b) is not true

!= Checks if the value of two operands are equal
or not

(a!=b) is true

<> (now obsolescent) Checks if the value of two operands are equal
or not	

(a<>b) is true

> Checks if the value of left operand is greater
than the value of right operand

(a>b) is not true

< Checks if the value of left operand is less than
the value of right operand

(a<b) is true

>= Checks if the value of left operand is greater
than or equal to the value of right operand

(a>=b) is not true

<= Checks if the value of left operand is less than
or equal to the value of right operand

(a<=) is true

Given a=10 b=20

Python Logical Operators

Operator Description Example

and Logical and a and b is true

or Logical or a or b is true

not Logical not not (a and b) is false

a=10 and b=20

selection

• selections can be embedded to create quite complex hierarchies of
“questions”	

• This can sometimes make reading code and maintenance hard especially with
the python white space rules as code quite quickly becomes complex to read	

• We usually prefer to put complex sequences in functions to make the code
easier to read / maintain

iteration

• iteration is the ability to repeat sections of code 	

• python has two main looping constructs 	

• for each	

• while	

• for-each loops operate on ranges of data 	

• while loops repeat while a condition is met

1 #!/usr/bin/python

2
3 from turtle import

*

4
5 def Square(_size) :

6 forward(_size)

7 left(90)

8 forward(_size)

9 left(90)

10 forward(_size)

11 left(90)

12 forward(_size)

13
14 for x in range(-250,250,40) :

15 goto(x,0)

16 Square(40)

17
18 done()

1 range(-250,250,40)
2 [-250, -210, -170, -130, -90, -50, -10, 30, 70, 110, 150, 190, 230]

the range function	

produces a list	

for x in ... assigns	

each list element	

to x in turn

iteration.py

1 #!/usr/bin/python

2 # code taken from

3 # http://docs.python.org/dev/library/turtle.html

4
5 from turtle import

*

6
7 color('red', 'yellow')

8 begin_fill()

9 while True:

10 forward(200)

11 left(170)

12 if abs(pos()) < 1:

13 break
14 end_fill()

15 done()

here we loop forever	

and use a condition to	

see if we are finished	

then break out of the 	

loop

iteration2.py

looping for x,y

• This example shows how we
can loop from -10 in the x
and y in increments of 0.5	

• In C / C++ we would use a
for loop

1 #!/usr/bin/python

2
3 x=-10.0

4 y=-10.0

5
6
7 while y<=10.0 :

8 while x<=10.0 :

9 print x,y

10 x+=0.5

11 y+=0.5

12 x=-10.0

1 for (float y=-10; y<=10.0; y+=0.5)

2 {

3 for(float x=-10; x<=10.0; x+=0.5)

4 {

5 std::cout<<x<<" "<<y<<"\n";

6 }

7 }

alternative loop

#!/usr/bin/python
n =((a,b)for a in range(0,5)for b in range(0,5))
for i in n :
print i

(0, 0)	

(0, 1)	

(0, 2)	

(0, 3)	

(0, 4)	

(1, 0)	

(1, 1)	

(1, 2)	

(1, 3)	

(1, 4)	

(2, 0)	

(2, 1)	

(2, 2)	

(2, 3)	

(2, 4)	

(3, 0)	

(3, 1)	

(3, 2)	

(3, 3)	

(3, 4)	

(4, 0)	

(4, 1)	

(4, 2)	

(4, 3)	

(4, 4)

Loop2.py

Built in functions

enumerate
#!/usr/bin/python

colours=['red','green','blue','black','white']

c=list(enumerate(colours))

print c

c=list((enumerate(colours,start=2)))

print c

[(0, 'red'), (1, 'green'), (2, 'blue'), (3, 'black'), (4, 'white')]	

[(2, 'red'), (3, 'green'), (4, 'blue'), (5, 'black'), (6, 'white')]

enumerate.py

set / frozenset

• A set object is an unordered collection of immutable values. 	

• Common uses include membership testing, removing duplicates
from a sequence, and computing mathematical operations such
as intersection, union, difference, and symmetric difference. 	

• sets may be added to, frozen sets may not, however both types
may be compared against each other

[0, 1, 2, 3, 4, 0, 1, 2, 3, 4]	

set([0, 1, 2, 3, 4])	

a= set([1, 2, 3, 4])	

b= set([3, 4, 5, 6])	

union a | b set([1, 2, 3, 4, 5, 6])	

intersection a & b set([3, 4])	

subset false a<b False	

difference a-b set([1, 2])	

Symmetric diff a^b set([1, 2, 5, 6])

#!/usr/bin/python

a=range(0,5)

a

*

=2

print a

b=set(a)

print b

a =set([1,2,3,4])

b =set([3,4,5,6])

print "a=",a

print "b=",b

print "union a | b",a | b

print "intersection a & b" ,a & b

print "subset false a<b",a < b

print "difference a-b",a - b

print "Symmetric diff aˆb",a ˆ b

lambda
1 #!/usr/bin/python

2 import math

3 a=[1,2,3,4,5]

4 b=map(lambda x: x+1 , a)

5 print b

6
7 To=[0,0,0]

8 From=[0,8,4]

9 print To,From

10
11 direction = map(lambda x,y : x-y , To,From)

12 print direction

13 # get the length

14 len = math.sqrt(sum(map(lambda x : x

*

x , direction)))

15 print len

16 # divide by length

17 normal= map(lambda x : x/len , direction)

18 print normal

./lambda.py 	

[2, 3, 4, 5, 6]	

[0, 0, 0] [0, 8, 4]	

[0, -8, -4]	

8.94427191	

[0.0, -0.89442719099991586, -0.44721359549995793]

This example shows	

the inherent instability	

of floating point 	

calculations

Modules

• A module is a file containing Python definitions and statements	

• The file name is the module name with the suffix .py appended	

• Within a module, the module’s name (as a string) is available as
the value of the global variable __name__	

• The following example shows this (from the python
documentation)

Fibonacci numbers module

def fib(n):

a, b = 0, 1

while b < n:

print b,

a, b = b, a+b

def fib2(n):

result = []

a, b = 0, 1

while b < n:

result.append(b)

a, b = b, a+b

return result

>>> import fibo!
>>> fibo.fib(1000)!
1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987!
>>> fibo.fib2(100)!
[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]!
>>> fibo.__name__!
'fibo'

Using Local Names

• If we are going to use a module / function often we can give it a
local name.	

• For example

>>> fib = fibo.fib!
>>> fib(500)!
1 1 2 3 5 8 13 21 34 55 89 144 233 377

Modules
• A module can contain executable statements as well as function definitions.

These statements are intended to initialize the module. 	

• Each module has its own private symbol table, which is used as the global
symbol table by all functions defined in the module. 	

• Modules can import other modules.	

• Note For efficiency reasons, each module is only imported once per
interpreter session. 	

• Therefore, if you change your modules, you must restart the interpreter
or, if it’s just one module you want to test interactively, use reload(), e.g.
reload(modulename).

import
• There is a variant of the import statement that imports names from a

module directly into the importing module’s symbol table. For example:	

!

!

• This does not introduce the module name from which the imports are
taken in the local symbol table (so in the example, fibo is not defined).	

• There is even a variant to import all names that a module defines:

>>> from fibo import fib, fib2!
>>> fib(500)!
1 1 2 3 5 8 13 21 34 55 89 144 233 377

>>> from fibo import *!
>>> fib(500)!
1 1 2 3 5 8 13 21 34 55 89 144 233 377

Executing modules as scripts

• When you run a Python module with	

• the code in the module will be executed, just as if you imported
it, but with the __name__ set to "__main__". 	

• This means we can modify the script to execute stand alone by
adding the following code

python fibo.py <arguments>

if __name__ == "__main__":

import sys

if len(sys.argv) > 1 :

fib(int(sys.argv[1]))

The main function

• The main function is a special function for most programming languages 	

• It is the first function to be executed and is the entry point for most
programs	

• The main function is usually passed a set of global system variables called
arguments	

• These are available through the life of the program and are a good way of
passing values to a program

Python Main
1 #!/usr/bin/python
2 import sys
3
4 def main(argv=None):
5 print "in main function"
6
7
8 if __name__ == "__main__":
9 sys.exit(main())

 The Module Search Path
• When a module is imported (or attempted to be) the following paths are

searched	

• the directory containing the input script (or the current directory).	

• PYTHONPATH (a list of directory names, with the same syntax as the
shell variable PATH).	

• the installation-dependent default.	

• After initialisation, Python programs can modify sys.path. 	

• The directory containing the script being run is placed at the beginning of the
search path, ahead of the standard library path.

adding a path

import sys

sys.path.append('˜/MyPythonModules')

dir()
• The built-in function dir() is used to find out which names a

module defines. It returns a sorted list of strings:

>>> import sys

>>> dir(sys)

['__displayhook__', '__doc__', '__egginsert', '__excepthook__', '__name__', '

__package__', '__plen', '__stderr__', '__stdin__', '__stdout__', '

_clear_type_cache', '_current_frames', '_getframe', '_mercurial', '

api_version', 'argv', 'builtin_module_names', 'byteorder', 'call_tracing', '

callstats', 'copyright', 'displayhook', 'dont_write_bytecode', 'exc_clear', '

exc_info', 'exc_type', 'excepthook', 'exec_prefix', 'executable', 'exit', '

flags', 'float_info', 'float_repr_style', 'getcheckinterval', '

getdefaultencoding', 'getdlopenflags', 'getfilesystemencoding', 'getprofile',

'getrecursionlimit', 'getrefcount', 'getsizeof', 'gettrace', 'hexversion', '

long_info', 'maxint', 'maxsize', 'maxunicode', 'meta_path', 'modules', 'path'

, 'path_hooks', 'path_importer_cache', 'platform', 'prefix', 'ps1', 'ps2', '

py3kwarning', 'setcheckinterval', 'setdlopenflags', 'setprofile', '

setrecursionlimit', 'settrace', 'stderr', 'stdin', 'stdout', 'subversion', '

version', 'version_info', 'warnoptions']

>>>

help([object])

• get python help on object	

• object must be imported, use q to exit and usual man page
paging system for control.

help(min)!
Help on built-in function min in module __builtin__:!
!
min(...)!
 min(iterable[, key=func]) -> value!
 min(a, b, c, ...[, key=func]) -> value!
!
 With a single iterable argument, return its smallest item.!
 With two or more arguments, return the smallest argument.

A trip back in time

• Early electronic computing (pre 80’s) didn’t have the GUIs we have today.	

• This meant that all interactions with the computer were done with typing into
a terminal.	

• Most modern operating systems still have the option to do this	

• And in some cases this method is quicker than using the GUI (but does
require some additional knowledge)

Example

• If we wish to rename every file in the tree opposite in a GUI
we would have to click on every file and type the new name	

• Some Operating Systems allow the automation of GUI tasks
but this is still time consuming.	

• The answer in most cases is to use another GUI program or
to write a script	

• Most scripting languages let us access the underlying os
commands to do this

The Shell

• In windows we can access the command prompt (shell) by typing cmd in the
start menu	

• In linux we can open a shell by clicking on the shell icon (but if you a real
linux user there will be one open all the time!)	

• We can then start typing commands, however windows and Unix have
different commands for the same action

Command's Purpose MS-DOS Linux Basic Linux Example

Copies files copy cp cp thisfile.txt /home/thisdirectory

Moves files move mv mv thisfile.txt /home/thisdirectory

Lists files dir ls ls

Clears screen cls clear clear

Deletes files del rm rm thisfile.txt

Finds a string of text in a file find grep grep this word or phrase thisfile.txt

Creates a directory mkdir mkdir mkdir directory

View a file more less[d] less thisfile.txt

Renames a file ren mv mv thisfile.txt thatfile.txt[e]

Displays your location in the file system chdir pwd pwd

Changes directories with a specified path (absolute path) cd pathname cd pathname cd /directory/directory

Changes directories with a relative path cd .. cd .. cd ..

Environment Variables

• When we open a shell we are placed in our home directory 	

• This place is stored in an Environment variable called	

• $HOME on unix and mac	

• %HOMEPATH% on windows

1 echo $HOME
2 echo %HOMEPATH%
3
4 /Users/jmacey
5 \Users\jmacey

Environment Variables

• Environment variables are global system variables available to all processes
(i.e. programs)	

• Most operating systems have a number of default values set which programs
can query to set the way things operate.	

• Users can also se their own environment variables to customise how things
work.	

• It is not uncommon for software packages to install their own environment
variables when the program is installed.

Environment Variables

• The PATH environment variable allows us to set a directory where the OS
will look for scripts and programs	

• We can add a local directory to our system which contains user scripts
which can be executed by the user	

• The configuration is different for both Windows and Unix

Unix Environment variables

• The default shell used in the linux studios is the bash shell (Bourne again Shell)	

• To set environment variable in this shell we use a file called .bashrc which is
hidden in the home directory	

• if you type gedit ~/.bashrc you can access it 	

!

!

• if you re-open the shell this will be made permanent	

• Now any program placed in this directory may be found and executed

1 export PATH=$PATH:$HOME/scripts

Windows Environment Variables

• Setting environment variables in windows is different from Unix as we have to
use the GUI	

• In our studios we can access them from the control panel and students have
admin rights to do so	

• The following panels show the way to do this

• Select the system
variable called Path	

• Click on the edit button
and the following dialog
will be displayed

• At the end of the Variable value line add the following	

!

!

• The ; is a separator for the different values

1 ;%HOMEDRIVE%%HOMEPATH%scripts

The scripts directory

• Now we have told the system to look in the scripts directory for any scripts
to run we need to create this directory	

• To do this in the console we do the following where the mkdir command
makes a directory

1 // Windows
2
3 cd %HOMEPATH%
4 mkdir scripts
5
6 // Unix
7 cd
8 mkdir scripts

testing

• Type the above in an editor (or your choice) and save it in the scripts directory as
hello.py	

• In unix issue the following command in the same directory	

!

!

• now from any directory you should be able to type hello.py to run the script

1 #!/bin/python
2 print "This is working"

1 chmod 755 hello.py

os.environment
1 #!/usr/bin/python
2 import os
3
4 for env in os.environ :
5 print "Variable = %s \nValue = %s"%(env, os.environ.get(env))

1 #!/usr/bin/python
2 import os
3
4 print os.environ.get("PATH")

Accessing the Filesystem

• The python os module contains a number of functions which allow
us to access the file system	

• This module allows us to create files and directories	

• Change directories	

• List the contents of a directory	

• and much more besides

1 #!/usr/bin/python
2
3 import os
4 # get our current directory
5 CWD = os.getcwd()
6 print CWD
7 # make a directory
8 os.mkdir("TestDir")
9 # change to the new directory

10 os.chdir("TestDir")
11 NewDir = os.getcwd()
12 print NewDir
13 print os.listdir(CWD)
14 # change back to CWD
15 os.chdir(CWD)
16 # remove the dir we made
17 os.rmdir("TestDir")
18 print os.listdir(CWD)

1 /Users/jmacey/teaching/Python/PythonLectures/Code/Lecture2
2 /Users/jmacey/teaching/Python/PythonLectures/Code/Lecture2/TestDir
3 ['FormatString.py', 'OS.py', 'String1.py', 'TestDir']
4 ['FormatString.py', 'OS.py', 'String1.py']

Listing Files in a directory

• The os.listdir() function will return a list of all the files in the
current directory	

• If we need to identify only a certain type of file we need search
the string for the type we are looking for	

• The following example identifies only exr files based on the .exr
extension

1 #!/usr/bin/python
2 import os
3
4 Files=os.listdir(".")
5
6 for file in Files :
7 if file.endswith(".exr") :
8 print file

Files

• One of the simplest way of communicating between different packages and
different programs is by the use of text files.	

• Reading and writing files in python is very simple and allows us to very
quickly output elements from one software package to another in an easily
readable hence debuggable way.

File processing :
 order of

operations

Open File with

open

Get File

Name

File Open? Report Error

Read or write

DATA

FINISHED?

Close File

close

end

No

yes

no

yes

Stream IO

• When a file is opened a file descriptor is returned and this
file descriptor is used for each subsequent I/O operation,
when any operation is carried out on the file descriptor its
is known as a stream.	

• When a stream is opened the stream object created is used
for all subsequent file operations not the file name.

The open function

• The open function takes two parameters	

• The fist one is a String for the name of the file to open	

• The 2nd one is the open mode “r” for reading from a file “w” for writing
to a file

1 # open a file for reading
2 FILE=open(FileName,"r")
3
4 # open a file for writing
5 FILE=open(FileName,"w")

The close function

• Once a file has been finished with it must be closed.	

• This is especially important if we are writing to a file as the OS
may be storing these values in memory.	

• The close function actually forces the OS to flush the file to disk
and closes thing properly

1 FILE.close()

1 #!/usr/bin/python
2
3 import os
4 import shutil
5 import sys
6
7 def Usage() :
8 print "ReadFile [filename]"
9

10 def main(argv=None):
11 # check to see if we have enough arguments
12 if len(sys.argv) !=2 :
13 Usage()
14 else :
15 # get the old and new file names
16 FileName=sys.argv[1]
17 if (os.path.exists(FileName)) :
18 FILE=open(FileName,"r")
19 lines=FILE.readlines()
20 # now we have read the data close the

file
21 FILE.close()
22 LineNum=0
23 for line in lines :
24 print "%04d %s" %(LineNum,line),
25 LineNum+=1
26
27 if __name__ == "__main__":
28 sys.exit(main())

Open a file passed on the
command line and print the
contents

1 #!/usr/bin/python
2
3 import os
4 import shutil
5 import sys
6 # import the uniform function from random
7 from random import uniform
8
9 def Usage() :

10 print "WriteData [filename] Number"
11
12 def main(argv=None):
13 # check to see if we have enough arguments
14 if len(sys.argv) !=3 :
15 Usage()
16 else :
17 # get the file name to write to
18 FileName=sys.argv[1]
19 # convert the 2nd argument to an int
20 Num=int(sys.argv[2])
21 # try to open the file
22 try :
23 FILE=open(FileName,"w")
24 # if this fails catch the error and exit
25 except IOError :
26 print "Error opening file",FileName
27 return
28 # loop and create some ranom values to write to the file
29 for i in range(0,Num) :
30 FILE.write("Point %f %f %f\n" %(uniform(-10,10),uniform(-10,10),

uniform(-10,10)))
31 # finally close the file
32 FILE.close()
33 if __name__ == "__main__":
34 sys.exit(main())

1 Point 8.040192 -0.405584 8.282515
2 Point -4.348876 9.117686 3.307612
3 Point 0.284490 -8.635971 3.291273
4 Point 0.092318 -9.290154 8.649248
5 Point 3.125148 -7.677539 -5.233937
6 Point 4.029233 -8.312551 -0.478354
7 Point 2.601833 8.167995 5.230083
8 Point -6.664861 0.562662 2.441849
9 Point 5.003445 -3.522960 -3.876358

10 Point -8.750782 -7.294186 1.573799

Reading the data back

• The following example reads the data from the previous
program and prints it out.	

• As the data is stored on a per line basis we can read it in one
hit and then process it

1 #!/usr/bin/python
2
3 import os
4 import shutil
5 import sys
6 # import the uniform function from random
7 from random import uniform
8
9 def Usage() :

10 print "ReadData [filename] "
11
12 def main(argv=None):
13 # check to see if we have enough arguments
14 if len(sys.argv) !=2 :
15 Usage()
16 else :
17 # get the file name to write to
18 FileName=sys.argv[1]
19 # try to open the file
20 try :
21 FILE=open(FileName,"r")
22 # if this fails catch the error and exit
23 except IOError :
24 print "Error opening file",FileName
25 return
26 # loop and create some ranom values to write to the file
27 Lines=FILE.readlines()
28 FILE.close()
29 for line in Lines :
30 # lets see if the line is a point
31 if line.startswith("Point") :
32 # now split it and convert it to a numberic value
33 line=line.split()
34 x=float(line[1])
35 y=float(line[2])
36 z=float(line[3])
37 print "%f %f %f" %(x,y,z)
38 if __name__ == "__main__":
39 sys.exit(main())

Object Orientation

• Python is fully object−oriented and supports class inheritance	

• Defining a class in Python is simple as with functions, there is no
separate interface definition (as used in languages like c++)	

• A Python class starts with the reserved word class, followed by the class
name. 	

• Technically, that's all that's required, since a class doesn't need to inherit
from any other class.

Data Representation
•Most programming tasks are the representation and manipulation of data	

•When programming for graphics we need to think in terms of the
representation of data (usually numbers)	

•The visualisation of this data is usually very easy.	

•However storing and manipulation this data is not.	

•Usually we will create data structures (or classes) to hold the data and apply
algorithms to this data to change it	

• Finally we visualise it (draw to the screen)

Structures
•Often programs manipulate objects which have several different parts. In

C we can create variables called structures 	

•This allows us to store records of data regarding a particular subject 	

• Each part may be of a different type	

• Each record may have several components/attributes

Exercise Pt 1

•Consider the image opposite	

•How can we describe the individual
Spheres?	

•And come up with a generic
description of a sphere?

Position Colour

Radius

Identifier

Abstraction
• In philosophical terminology abstraction is the thought process wherein ideas

are distanced from objects.	

• Abstraction uses a strategy of simplification of detail, wherein formerly concrete
details are left ambiguous, vague, or undefined; thus speaking of things in the
abstract demands that the listener have an intuitive or common experience with
the speaker, if the speaker expects to be understood 	

• For example, many different things have the property of redness: lots of things
are red (Parsons 2000)

Deductive Abstraction (ZETTL 2008)

In the deductive approach to
abstraction 	

we move from photographic
realism to 	

the essential qualities of the
event

Inductive Abstraction (Zettl 2008)

In the inductive approach to abstraction 	

we study the formal elements of a painting, or of
television or film, and arrange these elements to
express the essential qualities of an event. In this case,
we combine lines, circles, and area to build up
(inductively) the essence of a cityscape

So which approach do we use?

• It depends upon the situation	

•Our experience in design and programming	

• Factors about the system we are designing	

• Factors about development environment.

Handling Problems

• Designing Software for real life problems (or CGI in our case)	

• However real life problems are “nebulous”	

• So we must separate the “necessary” from the “unnecessary”	

• This is know as “abstraction”	

Problem

Model

Abstraction

Exercise Pt 2.

• Consider the Sphere	

• Position	

• Colour	

• Identifier	

• Radius

1 typedef struct

2 {

3 float m_x;

4 float m_y;

5 float m_z;

6 }Point;

1 typedef struct

2 {

3 float m_r;

4 float m_g;

5 float m_b;

6 float m_a;

7 }Colour;

1 typedef struct

2 {

3 Point m_pos;

4 Colour m_colour;

5 std::string m_name;

6 float m_radius;

7 }Sphere;

Python Classes
• Typically a Python class is a self contained .py module with all the code for that

module contained within it.	

• The class may also have special methods to initialise the data and setup any basic
functions

1 class ClassName:
2 <statement-1>
3 .
4 .
5 .
6 <statement-N>

Colour Class #!/usr/bin/python

class Colour :

' a very simple colour container'

def __init__(self,r=0.0,g=0.0,b=0.0,a=1.0) :

'constructor to set default values'

self.r=r

self.g=g

self.b=b

self.a=a

def debugprint(self) :

' method to print out the colour data for debug'

print '[%f,%f,%f,%f]' %(self.r,self.g,self.b,self.a)

def mix(self,colour,t) :

'''method to mix current colour with another by t

will catch the attribute error and pass back black if

wrong values are passed

'''

c=Colour()

try :

c.r=self.r+(colour.r-self.r)

*

t

c.g=self.g+(colour.g-self.g)

*

t

c.b=self.b+(colour.b-self.b)

*

t

c.a=self.a+(colour.a-self.a)

*

t

except AttributeError, e:

pass

return c

__init__
• Is the python class initialiser, at it’s simplest level it can be thought of as a

constructor but it isn’t!	

• The instantiation operation (“calling” a class object) creates an empty
object. 	

• The __init__ method allows use to set an initial state	

• The actual process is the python constructor is __new__	

• Python uses automatic two-phase initialisation - __new__ returns a valid
but (usually) unpopulated object, which then has __init__ called on it
automatically.

Class Methods

• The class methods are defined within the same indentation scope of the
rest of the class	

• There is no function overloading in Python, meaning that you can't have
multiple functions with the same name but different arguments	

• The last method defined with a name will be used

self

• There are no shorthands in Python for referencing the object’s members from
its methods the method function is declared with an explicit first argument
representing the object, which is provided implicitly by the call.	

• By convention the first argument of a method is called self. 	

• The name self has absolutely no special meaning to Python. 	

• Note, however, that by not following the convention your code may be less
readable to other Python programmers, and it is also conceivable that a class
browser program might be written that relies upon such a convention.

encapsulation
• In python there is no private or protected encapsulation	

• We can access all class attributes using the . operator	

• We can also declare instance variables where ever we like in the
methods (for example self.foo=10 in a method will be available once
that method has been called)	

• By convention it would be best to declare all instance variables
(attributes) in the __init__ method

Making attributes private

• Whilst python doesn’t support private encapsulation we can fake it using
name mangling	

• If we declare the class attributes using __ they will be mangled and
hidden from the outside of the class	

• This is shown in the following example

#!/usr/bin/python

class ColourPrivate :

' a very simple colour container'

def __init__(self,r=0.0,g=0.0,b=0.0,a=1.0) :

'constructor to set default values'

self.__r=r

self.__g=g

self.__b=b

self.__a=a

def debugprint(self) :

' method to print out the colour data for debug'

print '[%f,%f,%f,%f]' %(self.__r,self.__g,self.__b,self.__a)

def setR(self,r) :

self.__r=r

def getR(self) :

return self.__r

def setG(self,g) :

self.__g=g

def getG(self) :

return self.__g

def setB(self,b) :

self.__b=b

def getB(self) :

return self.__b

def setA(self,a) :

self.__a=a

def getA(self) :

return self.__a

#!/usr/bin/python

from ColourPrivate import

*

red=ColourPrivate()

red.__r=1.0

print red.getR()

red.debugprint()

red.setR(1.0)

print red.getR()

Attribute Access
• We can use the following methods to control what happens when we

try to access attributes that don’t exist

class Attr :

def __init__(self,x=1.0,y=1.0) :

self.x=x

self.y=y

def __str__(self) :

''' this method will return our data when

doing something like print v '''

return "[%r,%r]" %(self.x,self.y)

def __getattr__(self,name) :

print "the attrib %r doesn't exist" %(name)

def __setattr__(self,name,value) :

print "trying to set attribute %r=%r" %(name,

value)

self.__dict__[name] = value

def __delattr__(self,name) :

print "trying to delete %r " %(name)

a=Attr(1,1)
print a
print a.w
a.w=99
del a.w

trying to set attribute 'x'=1	

trying to set attribute 'y'=1	

[1,1]	

the attrib 'w' doesn't exist	

None	

trying to set attribute 'w'=99	

trying to delete 'w'

__del__

• __del__ is analogous to the destructor	

• It defines behaviour for when an object is garbage collected	

• As there is no explicit delete in python it is not always called	

• Be careful, however, as there is no guarantee that __del__ will be
executed if the object is still alive when the interpreter exits	

• __del__ can't serve as a replacement for good coding practice

#!/usr/bin/python

class DelTest :

def __init__(self) :

'constructor to set default values'

print "init"

def __del__(self) :

print "deleted"

>>> from Del import *	

>>> d=DelTest()	

init	

>>> d=1	

deleted	

>>>

Vec3 Class
• The following examples are going to use the following Vec3 class

definition

class Vec3 :

def __init__(self,x=0.0,y=0.0,z=0.0) :

self.x=x

self.y=y

self.z=z

def __str__(self) :

return "[%f,%f,%f]" %(self.x,self.y,self.z)

Comparison Operators

• __cmp__(self,other) is the default comparison operator	

• It actually implements behavior for all of the comparison operators (<,
==, !=, etc.)	

• It is however best to define your own operators using the individual
operator overloads as shown in the next code segment

__eq__(self, other)

equality operator, ==

__ne__(self, other)

the inequality operator, !=

__lt__(self, other)

less-than operator, <

__gt__(self, other)

greater-than operator, >

__le__(self, other)

less-than-or-equal-to operator, <=

__ge__(self, other)

greater-than-or-equal-to operator, >=

def __eq__(self,rhs) :

''' equality test'''

return self.x == rhs.x and self.y == rhs.y and self.z == rhs.z

def __ne__(self,rhs) :

''' not equal test'''

return self.x != rhs.x or self.y != rhs.y or self.z != rhs.z

__str__
• is used with the built in print function, we can just format the string to

do what we want.	

• There is also a __repr__ method used to print a human readable
presentation of an object.

#!/usr/bin/python

from Vec3 import

*

v1=Vec3(1,2.0,1.0)

print v1

Numeric Operators
• The numeric operators are fairly easy, python supports the following operators

which take a right hand side argument.

__add__(self, other)

__sub__(self, other)

__mul__(self, other)

__floordiv__(self, other)

__div__(self, other)

__truediv__(self, other) # python 3

__mod__(self, other)

__divmod__(self, other)

__pow__ # the

**

operator

__lshift__(self, other) #<<

__rshift__(self, other) #>>

__and__(self, other) # bitwise &

__or__(self, other) # bitwise |

__xor__(self, other) # ˆ operator

def __add__(self,rhs) :

''' overloaded + operator for Vec3 = V1+V2'''

r=Vec3()

r.x=self.x+rhs.x

r.y=self.y+rhs.y

r.z=self.z+rhs.z

return r

def __sub__(self,rhs) :

''' overloaded - operator for Vec3 = V1-V2'''

r=Vec3()

r.x=self.x-rhs.x

r.y=self.y-rhs.y

r.z=self.z-rhs.z

return r

def __mul__(self,rhs) :

''' overloaded

*

scalar operator for Vec3 = V1

*

S

'''

r=Vec3()

r.x=self.x

*

rhs

r.y=self.y

*

rhs

r.z=self.z

*

rhs

return r

Reflected Operators
• In the previous examples the operators would work like this Vec3 * 2 to

make operators that work the other way round we use reflected
operators	

• In most cases, the result of a reflected operation is the same as its
normal equivalent, so you may just end up defining __radd__ as calling
__add__ and so on.

__radd__(self, other)

__rsub__(self, other)

__rmul__(self, other)

__rfloordiv__(self, other)

__rdiv__(self, other)

__rtruediv__(self, other) # python 3

__rmod__(self, other)

__rdivmod__(self, other)

__rpow__ # the

**

operator

__rlshift__(self, other) #<<

__rrshift__(self, other) #>>

__rand__(self, other) # bitwise &

__ror__(self, other) # bitwise |

__rxor__(self, other) # ˆ operator

def __rmul__(self,lhs) :

''' overloaded

*

scalar operator for Vec3 = V1

*

S'''

r=Vec3()

r.x=self.x

*

lhs

r.y=self.y

*

lhs

r.z=self.z

*

lhs

return r

Augmented Assignment
• These are the += style operators

__iadd__(self, other)

__isub__(self, other)

__imul__(self, other)

__ifloordiv__(self, other)

__idiv__(self, other)

__itruediv__(self, other) # python 3

__imod__(self, other)

__idivmod__(self, other)

__ipow__ # the

**

operator

__ilshift__(self, other) #<<

__irshift__(self, other) #>>

__iand__(self, other) # bitwise &

__ior__(self, other) # bitwise |

__ixor__(self, other) # ˆ operator

def __iadd__(self,rhs) :

''' overloaded +- operator for V1+=V2'''

self.x+=rhs.x

self.y+=rhs.y

self.z+=rhs.z

return self

def __imul__(self,rhs) :

''' overloaded

*

= scalar operator for V1

*

=2'''

self.x

*

=rhs

self.y

*

=rhs

self.z

*

=rhs

return self

Class Representation
• There are quite a few other special class methods that can be used if

required

__unicode__(self)

__format__(self, formatstr)

__hash__(self)

__nonzero__(self)

__dir__(self)

__sizeof__(self)

Composition
• To build more complex classes we can use composition, we just need to

import the correct module

class Colour:

ctor to assign values

def __init__(self, r=0, g=0, b=0,a=1):

self.r=float(r)

self.g=float(g)

self.b=float(b)

self.a=float(a)

debug print function to print vector values

def __str__(self):

return '[%f,%f,%f,%f]' %(self.r,self.g,self.b,self.a)

class Point3:

ctor to assign values

def __init__(self, x=0.0, y=0.0, z=0.0):

self.x=float(x)

self.y=float(y)

self.z=float(z)

debug print function to print vector values

def __str__(self):

return '[%f,%f,%d]' %(self.x,self.y,self.z)

from Point3 import Point3

from Colour import Colour

class Sphere:

ctor to assign values

def __init__(self, pos=Point3(), colour=Colour(), radius=1,name=""):

self.pos=pos

self.colour=colour

self.radius=radius

self.name=name

def Print(self):

print "Sphere %s" %(self.name)

print "Radius %d" %(self.radius)

print "Colour",

print self.colour

print "Position ",

print self.pos

#!/usr/bin/python

from Sphere import Point3,Colour,Sphere

#Pos, colour, radius,name

s1=Sphere(Point3(3,0,0),Colour(1,0,0,1),2,"Sphere1")

s1.Print()

p1=Point3(3,4,5)

c1=Colour(1,1,1,1)

s2=Sphere(p1,c1,12,"New")

s2.Print()

s3=Sphere(Point3(3,0,2),Colour(1,0,1,1),2,"Sphere2")

s3.Print()

Inheritance
• in python inheritance is generated by passing in the parent class(es) to

the child class	

• This will allow all the base class functions to be accessed or override
them if defined in the child	

• The first example shows a basic inheritance

#!/usr/bin/python

class Parent(object):

def foo(self):

print "foo called self= ",self

def __str__(self) :

return "Parent"

class Child(Parent):

pass

parent = Parent()

child = Child()

parent.foo()

child.foo()

foo called self=Parent	

foo called self=Parent

#!/usr/bin/python

class Parent(object):

def foo(self):

print "foo called self=%s" %(self)

def bar(self) :

print "bar called self=%s" %(self)

def __str__(self) :

return "Parent"

#######################################

class Child(Parent):

def foo(self):

print "foo called self=%s" %(self)

def __str__(self) :

return "Child"

#######################################

parent = Parent()

child = Child()

parent.foo()

child.foo()

parent.bar()

child.bar()

foo called self=Parent	

foo called self=Child	

bar called self=Parent	

bar called self=Child

#!/usr/bin/python

class Parent(object):

def __init__(self,a) :

self.a=a

def foo(self):

print "foo called self=%s a=%r" %(self,self.a)

def __str__(self) :

return "Parent"

###

class Child(Parent):

def __init__(self,a,b) :

super(Child,self).__init__(a)

self.b=b

def foo(self):

print "foo called self=%s a=%r b=%r" %(self,self.a,self.b)

def __str__(self) :

return "Child"

###

parent = Parent(2)

child = Child('test' ,'values')

parent.foo()

child.foo()

References

• http://vt100.net/docs/tp83/chapter5.html	

• http://www.redhat.com/docs/manuals/linux/RHL-7.2-Manual/getting-
started-guide/ch-doslinux.html	

• http://www.artima.com/weblogs/viewpost.jsp?thread=4829	

• http://www.tutorialspoint.com/python/python_variable_types.htm	

• https://docs.python.org/2/tutorial/modules.html

http://vt100.net/docs/tp83/chapter5.html
http://www.redhat.com/docs/manuals/linux/RHL-7.2-Manual/getting-started-guide/ch-doslinux.html
http://www.artima.com/weblogs/viewpost.jsp?thread=4829
https://docs.python.org/2/tutorial/modules.html

Further Reading
• http://en.wikipedia.org/wiki/Environment_variable	

• http://en.wikipedia.org/wiki/Main_function_(programming)	

• http://docs.python.org/library/shutil.html	

• http://www.devshed.com/c/a/Python/String-Manipulation/	

• http://docs.python.org/library/string.html	

• http://www.rafekettler.com/magicmethods.html

http://en.wikipedia.org/wiki/Environment_variable
http://docs.python.org/library/shutil.html
http://www.devshed.com/c/a/Python/String-Manipulation/
http://docs.python.org/library/string.html

