
Introduction to Renderman
using the Python API

Saturday, 23 October 2010

Introduction to Renderman

• When Renderman was first proposed it was a C like API for the
development of scene descriptions to be rendered

• The description file produced is usually called a RIB (Renderman
Interface Byte stream) file and this is then passed to the renderer

• The description of how the surface is to be textured and shaded is
determined by a number of files called shaders

• These can describe surfaces, displacements, lights, volumes.

Saturday, 23 October 2010

Renderman Python

• As of Version 14 (2008) renderman now has a python API

• It is similar to the C API and running a python script will output a
rib file

• Alternatively we can render directly from within the python
script

• All of the notes presented will use the Python API to generate
the rib files so we have the dual advantage of learning Python and
prman at the same time.

Saturday, 23 October 2010

The
Renderman
Pipeline

The Renderman Pipeline [1]

Saturday, 23 October 2010

Hello World Renderman style
• A rib file is a simple text file, using an editor, type in the following

1 ##RenderMan RIB

2 #Comments start with a #

3 #File HelloWorld.rib #

4 #Created by jmacey

5 #Creation Date: Thu Sep 25 09:43:12 2008

6 version 3.04

7 Display "HelloWorld.exr" "framebuffer" "rgba"

8 Format 720 575 1

9 Projection "perspective"

10 WorldBegin

11 #move our world back 2 in the z so we can see it

12 Translate 0 0 2

13 #draw a sphere primitive

14 Sphere 1 -1 1 360

15 #end our world

16 WorldEnd

Saturday, 23 October 2010

Rendering the file
• To render the file use the following command line

render -t:2 simple.rib

• This will render the rib file to the framebuffer (i.e. the screen)

• • -t:2 tells renderman to use both cpu's for rendering (if you have
more increase the value -t:8 !

• To render to file change the Display line to the following

Display "HelloWorld.exr" "file" "rgba"

• Which will create a file called HelloWorld.exr

• We can then use the sho program to view it (sho HelloWorld.exr)

Saturday, 23 October 2010

Python Version
• The python script to generate the rib file is a lot larger as

we need to do some initial setup for the interface

• All rib commands belong to the namespace ri and are
prefixed with ri

• Apart from that the function names are the same as the
raw rib commands

• The following file was used to create the HelloWorld rib
file

Saturday, 23 October 2010

1 #!/usr/bin/python
2 # for bash we need to add the following to our .bashrc
3 # export PYTHONPATH=$PYTHONPATH:$RMANTREE/bin
4 import getpass
5 import time
6 # import the python renderman library
7 import prman
8
9 ri = prman.Ri() # create an instance of the RenderMan interface

10
11 filename = "HelloWorld.rib"
12 # this is the begining of the rib archive generation we can only
13 # make RI calls after this function else we get a core dump
14 ri.Begin(filename)
15 # ArchiveRecord is used to add elements to the rib stream in this case comments
16 # note the function is overloaded so we can concatinate output
17 ri.ArchiveRecord(ri.COMMENT, 'Comments start with a #')
18 ri.ArchiveRecord(ri.COMMENT, 'File HelloWorld.rib #')
19 ri.ArchiveRecord(ri.COMMENT, "Created by " + getpass.getuser())
20 ri.ArchiveRecord(ri.COMMENT, "Creation Date: " +time.ctime(time.time()))
21
22 # now we add the display element using the usual elements
23 # FILENAME DISPLAY Type Output format
24 ri.Display("HelloWorld.exr", "framebuffer", "rgba")
25 # Specify PAL resolution 1:1 pixel Aspect ratio
26 ri.Format(720,575,1)
27 # now set the projection to perspective
28 ri.Projection(ri.PERSPECTIVE)
29
30 # now we start our world
31 ri.WorldBegin()
32 # move back 2 in the z so we can see what we are rendering
33 ri.ArchiveRecord(ri.COMMENT, 'move our world back 2 in the z so we can see it')
34 ri.Translate(0,0,2)
35 ri.ArchiveRecord(ri.COMMENT, 'draw a sphere primitive')
36 ri.Sphere (1,-1, 1, 360)
37 # end our world
38 ri.ArchiveRecord(ri.COMMENT, 'end our world')
39 ri.WorldEnd()
40 # and finally end the rib file
41 ri.End()

1 ##RenderMan RIB

2 #Comments start with a #

3 #File HelloWorld.rib #

4 #Created by jmacey

5 #Creation Date: Thu Sep 25 09:51:00 2008

6 version 3.04

7 Display "HelloWorld.exr" "framebuffer" "rgba"

8 Format 720 575 1

9 Projection "perspective"

10 WorldBegin

11 #move our world back 2 in the z so we can see it

12 Translate 0 0 2

13 #draw a sphere primitive

14 Sphere 1 -1 1 360

15 #end our world

16 WorldEnd

As you can see
The rib file created
from the python API
has no indentation

Saturday, 23 October 2010

Python Path

• The first line of the program is called a hash bang (#!)

• it is used to tell the shell where to look for the interpreter for the
current script (in this case python)

• On most systems python lives in the /usr/bin/python directory so
we use put this as the first line of the python script

1 #!/usr/bin/python

Saturday, 23 October 2010

Finding renderman

• Renderman ships with a python interface to the renderman
library, we need to tell the python shell where to find this interface

• The python shell uses an environment variable called
PYTHONPATH to search for python libraries, when using python
for renderman we must tell python to search in the $RMANTREE/
bin directory for the python library

• This can be done by setting the line above for our shell (usually
in .profile or .bashrc)

1 export PYTHONPATH=$PYTHONPATH:$RMANTREE/bin

Saturday, 23 October 2010

Basic Renderman commands

Load the prman library1 import prman
2
3 ri = prman.Ri()
4
5
6 filename = "TeapotPY.rib"
7 ri.Begin(filename)
8
9

10
11
12
13 ri.End()

Create an instance of the
prman interface and assign it

to the variable ri

Begin our scene
called “TeapotPY.rib”

finally finish our scene
will cause the rib file to

be written

 Scene generation
 code goes here

Saturday, 23 October 2010

direct rendering
• In the previous example a file name is passed to the ri.Begin()

function

• If we wish to render the scene directly without generating the
rib file we can do the following

1 filename = "__render"
2 ri.Begin(filename)

Saturday, 23 October 2010

Rib layout
• When writing rib files it is best to use indentation for the

different Begin/End block to make it more human readable

• This is not needed by prman but for us when de-bugging
ribs

• To make the ribs easier to read we can add the following
code

1 # Add Tabs to the rib output

2 ri.Option("rib", {"string asciistyle": "indented"})

Saturday, 23 October 2010

ri. Commands
• There is usually a direct correlation between the rib commands

and the prman_for_python commands

• The prman_for_python commands belong to the class prman
which we usually assign the prefix pi. and are now functions which
may require parameters

• In some cases the commands will also require extra parameter
lists which are pass using a python dictionary

• The following code show some of the commands used to initialise
the display and the perspective projection

Saturday, 23 October 2010

1 ri.Display("Teapot.exr", "framebuffer", "rgba")
2
3 ri.Format(720,576,1)
4
5 ri.Projection(ri.PERSPECTIVE,{"fov":[35]})

Set the display options
(file,display driver,format)

Set image
Format

(W,H, aspect)

Set projection using built in
identifier ri.PERSPECTIVE

and a dictionary for attributes

Saturday, 23 October 2010

Moving Things Around

• In the first example the command Translate is used to move the
object 2 in the Z.

• Renderman treats +ve Z as going into the screen (opposite to
OpenGL)

• Renderman (and ribs) work with a Fixed Camera and the world
must be moved to be in the correct position for the fixed
camera

• This can be counter intuitive at first but you soon get used to it.

Saturday, 23 October 2010

Transforms

1 ##RenderMan RIB
2 #File transform1.rib
3 #Created by jmacey
4 #Creation Date: Thu Sep 25 10:16:50 2008
5 version 3.04
6 Display "transform1.exr" "framebuffer" "rgba"
7 Format 720 575 1
8 Projection "perspective"
9 WorldBegin

10 Translate 0 0 2
11 Translate -1 0 0
12 Sphere 1 -1 1 360
13 Translate 1 0 0
14 Sphere 1 -1 1 360
15 WorldEnd

1 #!/usr/bin/python
2 # for bash we need to add the following to our .bashrc
3 # export PYTHONPATH=$PYTHONPATH:$RMANTREE/bin
4 import getpass
5 import time
6 # import the python renderman library
7 import prman
8
9 ri = prman.Ri() # create an instance of the RenderMan interface

10
11 filename = "transform1.rib"
12 # this is the begining of the rib archive generation we can only
13 # make RI calls after this function else we get a core dump
14 ri.Begin(filename)
15 # ArchiveRecord is used to add elements to the rib stream in this case

comments
16 # note the function is overloaded so we can concatinate output
17 ri.ArchiveRecord(ri.COMMENT, 'File ' +filename)
18 ri.ArchiveRecord(ri.COMMENT, "Created by " + getpass.getuser())
19 ri.ArchiveRecord(ri.COMMENT, "Creation Date: " +time.ctime(time.time()))
20
21 # now we add the display element using the usual elements
22 # FILENAME DISPLAY Type Output format
23 ri.Display("transform1.exr", "framebuffer", "rgba")
24 # Specify PAL resolution 1:1 pixel Aspect ratio
25 ri.Format(720,575,1)
26 # now set the projection to perspective
27 ri.Projection(ri.PERSPECTIVE)
28
29 # now we start our world
30 ri.WorldBegin()
31 # move back 2 in the z so we can see what we are rendering
32 ri.Translate(0,0,2)
33 ri.Translate(-1,0,0)
34 ri.Sphere(1,-1,1,360)
35 ri.Translate(1,0,0)
36 ri.Sphere(1,-1,1,360)
37 ri.WorldEnd()
38 # and finally end the rib file
39 ri.End()

Saturday, 23 October 2010

Grouping Transforms

• To group transforms we use the TransformBegin and
TransformEnd commands

• These are similar to the OpenGL glPushMatrix() and
glPopMatrix() and preserve the current transformation
state

Saturday, 23 October 2010

Grouping Transforms

1 ##RenderMan RIB
2 #File transform2.rib
3 #Created by jmacey
4 #Creation Date: Thu Sep 25 10:22:19 2008
5 version 3.04
6 Display "transform2.exr" "framebuffer" "rgba"
7 Format 720 575 1
8 Projection "perspective"
9 WorldBegin

10 Translate 0 0 2
11 TransformBegin
12 Translate -1 0 0
13 Sphere 1 -1 1 360
14 TransformEnd
15 TransformBegin
16 Translate 1 0 0
17 Sphere 1 -1 1 360
18 TransformEnd
19 WorldEnd

1 #!/usr/bin/python
2 # for bash we need to add the following to our .bashrc
3 # export PYTHONPATH=$PYTHONPATH:$RMANTREE/bin
4 import getpass
5 import time
6 # import the python renderman library
7 import prman
8
9 ri = prman.Ri() # create an instance of the RenderMan interface

10
11 filename = "transform2.rib"
12 # this is the begining of the rib archive generation we can only
13 # make RI calls after this function else we get a core dump
14 ri.Begin(filename)
15 # ArchiveRecord is used to add elements to the rib stream in this case

comments
16 # note the function is overloaded so we can concatinate output
17 ri.ArchiveRecord(ri.COMMENT, 'File ' +filename)
18 ri.ArchiveRecord(ri.COMMENT, "Created by " + getpass.getuser())
19 ri.ArchiveRecord(ri.COMMENT, "Creation Date: " +time.ctime(time.time()))
20
21 # now we add the display element using the usual elements
22 # FILENAME DISPLAY Type Output format
23 ri.Display("transform2.exr", "framebuffer", "rgba")
24 # Specify PAL resolution 1:1 pixel Aspect ratio
25 ri.Format(720,575,1)
26 # now set the projection to perspective
27 ri.Projection(ri.PERSPECTIVE)
28
29 # now we start our world
30 ri.WorldBegin()
31 # move back 2 in the z so we can see what we are rendering
32 ri.Translate(0,0,2)
33 ri.TransformBegin()
34 ri.Translate(-1,0,0)
35 ri.Sphere(1,-1,1,360)
36 ri.TransformEnd()
37 ri.TransformBegin()
38 ri.Translate(1,0,0)
39 ri.Sphere(1,-1,1,360)
40 ri.TransformEnd()
41 ri.WorldEnd()
42 # and finally end the rib file
43 ri.End()

Saturday, 23 October 2010

Other Affine Transforms
• Scale x y z : scales the current active elements in x y and z

• Rotate [angle] x y z : rotate around the axis by [angle] degrees

• Identity : restores the transformation matrix to what is was
before world begin

1 # scale around the origin x,y,z
2
3 ri.Scale(1,2,1)
4
5 #rotate -90 degrees around the vector [1 0 0] (x)
6
7 ri.Rotate(-90,1,0,0)
8
9 # set the transform to the idenity matrix

10 # [1 0 0 0]
11 # [0 1 0 0]
12 # [0 0 1 0]
13 # [0 0 0 1]
14 ri.Identity()

Saturday, 23 October 2010

Affine Transforms

1 Display "affine.exr" "framebuffer" "rgba"
2 Format 720 575 1
3 Projection "perspective"
4 WorldBegin
5 Translate 0 0 2
6 TransformBegin
7 Translate -1 0 0
8 Scale 0.3 0.3 0.3
9 Rotate 45 0 1 0

10 Geometry "teapot"
11 Identity
12 Translate 1 -0.5 2
13 Scale 0.3 0.8 0.3
14 Rotate -90 1 0 0
15 Rotate 35 0 0 1
16 Geometry "teapot"
17 TransformEnd
18 WorldEnd

1 import prman
2
3 ri = prman.Ri()
4
5 filename = "affine.rib"
6 ri.Begin(filename)
7 ri.Display("affine.exr", "framebuffer", "rgba")
8 ri.Format(720,575,1)
9 ri.Projection(ri.PERSPECTIVE)

10
11 ri.WorldBegin()
12
13 ri.Translate(0,0,2)
14 ri.TransformBegin()
15 ri.Translate(-1,0,0)
16 ri.Scale(0.3,0.3,0.3)
17 ri.Rotate(45,0,1,0)
18 ri.Geometry("teapot")
19 ri.Identity()
20 ri.Translate(1,-0.5,2)
21 ri.Scale(0.3,0.8,0.3)
22 ri.Rotate(-90,1,0,0)
23 ri.Rotate(35,0,0,1)
24 ri.Geometry("teapot")
25 ri.TransformEnd()
26
27 ri.WorldEnd()
28 ri.End()

Saturday, 23 October 2010

Shape Primitives
• The rib specification has 7 parametric Quadrics commands

that allows for the specification of a 7 surfaces

• These are

1 Sphere radius zmin zmax sweepangle

2
3 Cylinder radius zmin zmax sweepangle

4
5 Cone height radius sweepangle

6
7 Paraboloid topradius zmin zmax sweepangle

8
9 Hyperboloid point1 point2 sweepangle

10
11 Disk height radius sweepangle

12
13 Torus majorrad minorrad phimin phimax sweepangle

Saturday, 23 October 2010

Primitives

Renderman Primitives [2]

Saturday, 23 October 2010

Primitives

Renderman Primitives [2]

Saturday, 23 October 2010

1 WorldBegin

2 Translate 0 0 10

3 TransformBegin

4 Translate -4 2 0

5 Sphere 1 -1 1 360

6 TransformEnd

7 TransformBegin

8 Translate -4 -2 0

9 Rotate 90 1 0 0

10 Cylinder 1 -0.5 0.5 360

11 TransformEnd

12 TransformBegin

13 Translate -1 2 0

14 Rotate -90 1 0 0

15 Cone 2 1 360

16 TransformEnd

17 TransformBegin

18 Translate -1 -2 0

19 Rotate -90 1 0 0

20 Paraboloid 1 1 2 360

21 TransformEnd

22 TransformBegin

23 Translate 2 2 0

24 Rotate -90 1 0 0

25 Hyperboloid 1 0 0.5 1 0 -0.5 270

26 TransformEnd

27 TransformBegin

28 Translate 2 -2 0

29 Rotate -90 1 0 0

30 Disk 0 1 360

31 TransformEnd

32 TransformBegin

33 Translate 3 0 0

34 Rotate 45 1 0 0

35 Torus 1 0.5 0 360 360

36 TransformEnd

37 WorldEnd

1 ri.WorldBegin()

2
3 ri.Translate(0,0,10)

4 ri.TransformBegin()

5 ri.Translate(-4,2,0)

6 ri.Sphere(1,-1,1,360)

7 ri.TransformEnd()

8 ri.TransformBegin()

9 ri.Translate(-4,-2,0)

10 ri.Rotate(90,1,0,0)

11 ri.Cylinder(1,-0.5,0.5,360)

12 ri.TransformEnd()

13 ri.TransformBegin()

14 ri.Translate(-1,2,0)

15 ri.Rotate(-90,1,0,0)

16 ri.Cone(2,1.0,360)

17 ri.TransformEnd()

18 ri.TransformBegin()

19 ri.Translate(-1,-2,0)

20 ri.Rotate(-90,1,0,0)

21 ri.Paraboloid(1.0,1.0,2.0,360)

22 ri.TransformEnd()

23 ri.TransformBegin()

24 ri.Translate(2,2,0)

25 ri.Rotate(-90,1,0,0)

26 p1=[1.0,0.0,0.5]

27 p2=[1.0,0.0,-0.5]

28 ri.Hyperboloid(p1,p2,270)

29 ri.TransformEnd()

30 ri.TransformBegin()

31 ri.Translate(2,-2,0)

32 ri.Rotate(-90,1,0,0)

33 ri.Disk(0,1,360)

34 ri.TransformEnd()

35 ri.TransformBegin()

36 ri.Translate(3 ,0,0)

37 ri.Rotate(45,1,0,0)

38 ri.Torus(1.00,0.5,0,360,360)

39 ri.TransformEnd()

40
41 ri.WorldEnd()

Note Hyperboloid
takes two Points as
arguments
represented as lists

Saturday, 23 October 2010

Parameter Lists
• Each of the primitives have the ability to pass

parameters to them

Name Declared Type Description
“P” vertex point Position

“Pw” vertex hpoint Position in homogeneous cords

“N” varying Normal Phong shading normals

“Cs” varying colour Surface Colour (overrides rib colour)

“Os” varying colour Surface opacity (overrides rib opacity)

“st” varying float[2] Texture Co-ordinates

Saturday, 23 October 2010

Parameter Lists
• The parameters are passed as a Python Dictionary

structure.

• The format is as follows

1 dict ={key : value}
2
3 colours=[1,1,1,.5,.9,1,.2,.9,0,.5,.2,0]
4
5 ri.Sphere(1,-1,1,360,{"Cs":colours})

Saturday, 23 October 2010

Coloured Sphere

1 # now we start our world
2 ri.WorldBegin()
3
4 ri.Translate(0,0,3)
5 ri.TransformBegin()
6 colours=[1,0,0,0,0,1,1,0,0,0,1,0]
7 #ri.Rotate(90,1,1,1)
8 ri.Sphere(1,-1,1,360,{"Cs":colours})
9 ri.TransformEnd()

10 ri.WorldEnd()
11 # and finally end the rib file
12 ri.End()

1 ##RenderMan RIB
2 #File Param.rib
3 #Created by jmacey
4 #Creation Date: Thu Sep 25 12:27:52 2008
5 version 3.04
6 Display "Param.exr" "framebuffer" "rgba"
7 Format 720 575 1
8 Projection "perspective" "uniform float fov" [50]
9 WorldBegin

10 Translate 0 0 3
11 TransformBegin
12 Sphere 1 -1 1 360 "Cs" [1 0 0 0 0 1 1 0 0 0 1 0]
13 TransformEnd
14 WorldEnd

Saturday, 23 October 2010

What No Cube?
• PRman uses patches and we can combine them to make a cube.

Patch “type” [parameterlist]

• Define a single patch. type can be either "bilinear" or "bicubic". parameterlist is a
list of token-array pairs where each token is one of the standard geometric
primitive variables

• Four points define a bilinear patch, and 16 define a bicubic patch. The order of
vertices for a bilinear patch is (0,0),(1,0),(0,1),(1,1).

• Note that the order of points defining a quadrilateral is different depending on
whether it is a bilinear patch or a polygon.

• The vertices of a polygon would normally be in clockwise (0,0),(0,1),(1,1),(1,0)
order.

Saturday, 23 October 2010

1 Declare "Cube" "string"

2
3 ObjectBegin "Cube"

4 Patch "bilinear" "P" [-0.5 -0.5 0.5 -0.5 0.5 0.5 0.5 -0.5 0.5 0.5 0.5 0.5]

5 Patch "bilinear" "P" [-0.5 -0.5 -0.5 -0.5 0.5 -0.5 0.5 -0.5 -0.5 0.5 0.5 -0.5]

6 Patch "bilinear" "P" [-0.5 -0.5 -0.5 -0.5 0.5 -0.5 -0.5 -0.5 0.5 -0.5 0.5 0.5]

7 Patch "bilinear" "P" [0.5 -0.5 -0.5 0.5 0.5 -0.5 0.5 -0.5 0.5 0.5 0.5 0.5]

8 Patch "bilinear" "P" [0.5 -0.5 0.5 0.5 -0.5 -0.5 -0.5 -0.5 0.5 -0.5 -0.5 -0.5]

9 Patch "bilinear" "P" [0.5 0.5 0.5 0.5 0.5 -0.5 -0.5 0.5 0.5 -0.5 0.5 -0.5]

10 ObjectEnd

1 TransformBegin

2 Translate -2 0 0

3 Rotate 25 0 1 0

4 ObjectInstance "Cube"

5 TransformEnd

6
7 TransformBegin

8 Translate 0 0 0

9 Rotate 25 1 1 0

10 ObjectInstance "Cube"

11 TransformEnd

12
13 TransformBegin

14 Translate 2 0 0

15 Rotate -25 1 1 1

16 Scale 0.2 2.0 0.2

17 ObjectInstance "Cube"

18 TransformEnd

Saturday, 23 October 2010

Python Cube Function
• The previous example used the Object instance rib

command

• This allowed us to repeat a series of rib commands.

• With python this can be replaced with a python
function instead

Saturday, 23 October 2010

1 def Cube(width,height,depth) :

2 w=width/2.0

3 h=height/2.0

4 d=depth/2.0

5 ri.ArchiveRecord(ri.COMMENT, 'Cube Generated by Cube Function')

6 #rear

7 face=[-w,-h,d,-w,h,d,w,-h,d,w,h,d]

8 ri.Patch("bilinear",{'P':face})

9 #front

10 face=[-w,-h,-d,-w,h,-d,w,-h,-d,w,h,-d]

11 ri.Patch("bilinear",{'P':face})

12 #left

13 face=[-w,-h,-d,-w,h,-d,-w,-h,d,-w,h,d]

14 ri.Patch("bilinear",{'P':face})

15 #right

16 face=[w,-h,-d,w,h,-d,w,-h,d,w,h,d]

17 ri.Patch("bilinear",{'P':face})

18 #bottom

19 face=[w,-h,d,w,-h,-d,-w,-h,d,-w,-h,-d]

20 ri.Patch("bilinear",{'P':face})

21 #top

22 face=[w,h,d,w,h,-d,-w,h,d,-w,h,-d]

23 ri.Patch("bilinear",{'P':face})

24 ri.ArchiveRecord(ri.COMMENT, '--End of Cube Function--')

25
26
27
28 # now we start our world

29 ri.WorldBegin()

30
31 ri.Translate(0,0,5)

32 ri.TransformBegin()

33 ri.Translate(-2,0,0)

34 ri.Rotate(25,0,1,0)

35 Cube(1,1,1)

36 ri.TransformEnd()

37 ri.TransformBegin()

38 ri.Translate(0,0,0)

39 ri.Rotate(25,1,1,0)

40 Cube(1,1,1)

41 ri.TransformEnd()

42 ri.TransformBegin()

43 ri.Translate(2,0,0)

44 ri.Rotate(-25,1,1,1)

45 Cube(0.2,2,0.2);

46 ri.TransformEnd()

47
48 ri.WorldEnd()

1 WorldBegin
2 Translate 0 0 5
3 TransformBegin
4 Translate -2 0 0
5 Rotate 25 0 1 0
6 #Cube Generated by Cube Function
7 Patch "bilinear" "P" [-0.5 -0.5 0.5 -0.5 0.5 0.5 0.5 -0.5 0.5 0.5 0.5 0.5]
8 Patch "bilinear" "P" [-0.5 -0.5 -0.5 -0.5 0.5 -0.5 0.5 -0.5 -0.5 0.5 0.5 -0.5]
9 Patch "bilinear" "P" [-0.5 -0.5 -0.5 -0.5 0.5 -0.5 -0.5 -0.5 0.5 -0.5 0.5 0.5]

10 Patch "bilinear" "P" [0.5 -0.5 -0.5 0.5 0.5 -0.5 0.5 -0.5 0.5 0.5 0.5 0.5]
11 Patch "bilinear" "P" [0.5 -0.5 0.5 0.5 -0.5 -0.5 -0.5 -0.5 0.5 -0.5 -0.5 -0.5]
12 Patch "bilinear" "P" [0.5 0.5 0.5 0.5 0.5 -0.5 -0.5 0.5 0.5 -0.5 0.5 -0.5]
13 #--End of Cube Function--
14 TransformEnd
15 TransformBegin
16 Translate 0 0 0
17 Rotate 25 1 1 0
18 #Cube Generated by Cube Function
19 Patch "bilinear" "P" [-0.5 -0.5 0.5 -0.5 0.5 0.5 0.5 -0.5 0.5 0.5 0.5 0.5]
20 Patch "bilinear" "P" [-0.5 -0.5 -0.5 -0.5 0.5 -0.5 0.5 -0.5 -0.5 0.5 0.5 -0.5]
21 Patch "bilinear" "P" [-0.5 -0.5 -0.5 -0.5 0.5 -0.5 -0.5 -0.5 0.5 -0.5 0.5 0.5]
22 Patch "bilinear" "P" [0.5 -0.5 -0.5 0.5 0.5 -0.5 0.5 -0.5 0.5 0.5 0.5 0.5]
23 Patch "bilinear" "P" [0.5 -0.5 0.5 0.5 -0.5 -0.5 -0.5 -0.5 0.5 -0.5 -0.5 -0.5]
24 Patch "bilinear" "P" [0.5 0.5 0.5 0.5 0.5 -0.5 -0.5 0.5 0.5 -0.5 0.5 -0.5]
25 #--End of Cube Function--
26 TransformEnd
27 TransformBegin
28 Translate 2 0 0
29 Rotate -25 1 1 1
30 #Cube Generated by Cube Function
31 Patch "bilinear" "P" [-0.1 -1 0.1 -0.1 1 0.1 0.1 -1 0.1 0.1 1 0.1]
32 Patch "bilinear" "P" [-0.1 -1 -0.1 -0.1 1 -0.1 0.1 -1 -0.1 0.1 1 -0.1]
33 Patch "bilinear" "P" [-0.1 -1 -0.1 -0.1 1 -0.1 -0.1 -1 0.1 -0.1 1 0.1]
34 Patch "bilinear" "P" [0.1 -1 -0.1 0.1 1 -0.1 0.1 -1 0.1 0.1 1 0.1]
35 Patch "bilinear" "P" [0.1 -1 0.1 0.1 -1 -0.1 -0.1 -1 0.1 -0.1 -1 -0.1]
36 Patch "bilinear" "P" [0.1 1 0.1 0.1 1 -0.1 -0.1 1 0.1 -0.1 1 -0.1]
37 #--End of Cube Function--
38 TransformEnd
39 WorldEnd

Saturday, 23 October 2010

Python Dictionaries

• Python dictionaries are a powerful key / value data structure
which allows the storing of different data types in the same data
set

• RenderMan's variable-length parameter list is represented in
prman_for_python as a standard Python dictionary whose keys
are the parameter declaration and whose values are scalars or
sequences whose length is governed by the declaration and
standard binding semantics

Saturday, 23 October 2010

1 #!/usr/bin/python
2
3 Dictionary={
4 "red":[1.0,0.0,0.0],
5 "green":[0.0,1.0,0.0],
6 "blue":[0.0,0.0,1.0],
7 "white":[1.0,1.0,1.0],
8 "black":[0.0,0.0,0.0]
9 }

10
11 print Dictionary.get("red")
12 print Dictionary.get("white")
13 print Dictionary.get("purple")

1 [1.0, 0.0, 0.0]
2 [1.0, 1.0, 1.0]
3 None

Create a dictionary of
colour lists
“key”:[r,g,b]

Use the .get(“key”)
method to find the
value

 note “None” returned
 if “key” not found

Saturday, 23 October 2010

Adding Colour

• To change the colour of a primitive we use the Color command
passing in the RGB components

• For example to create a red object we use

[RIB] Color 1 0 0 [Python] ri.Color([1,0,0])

• Colour is an attribute and as such will remain the currently active
colour until changed.

• To group colours (or any other attributes) we use the
AttributeBegin and AttributeEnd block

Saturday, 23 October 2010

Attributes

1 ri.AttributeBegin()
2 ri.Color([1,0,0])
3 ri.Geometry("teapot")
4 ri.AttributeEnd()

Saturday, 23 October 2010

Attributes
1 # now we start our world

2 ri.WorldBegin()

3
4 ri.Translate(0,0,5)

5 ri.Color([1,1,1])

6 ri.Opacity([1,1,1])

7 ri.TransformBegin()

8 ri.Translate(-0.5,0,0)

9 ri.AttributeBegin()

10 ri.Color([0,1,1])

11 ri.Opacity([0.2,0.2,0.2])

12 ri.Sphere(1,-1,1,360)

13 ri.AttributeEnd()

14 ri.TransformEnd()

15 ri.TransformBegin()

16 ri.Translate(0.5,0,0)

17 ri.Sphere(1,-1,1,360)

18 ri.TransformEnd()

19
20 ri.WorldEnd()

1 WorldBegin

2 Translate 0 0 5

3 Color [1 1 1]

4 Opacity [1 1 1]

5 TransformBegin

6 Translate -0.5 0 0

7 AttributeBegin

8 Color [0 1 1]

9 Opacity [0.2 0.2 0.2]

10 Sphere 1 -1 1 360

11 AttributeEnd

12 TransformEnd

13 TransformBegin

14 Translate 0.5 0 0

15 Sphere 1 -1 1 360

16 TransformEnd

17 WorldEnd

Saturday, 23 October 2010

Rib file Structure Conventions

• Following is a structured list of components for a conforming
RIB file that diagrams the "proper" use of RIB.

• Some of the components are optional and will depend greatly
on the resource requirements of a given scene.

• Indentation indicates the scope of the following command.

Saturday, 23 October 2010

1 Preamble and global variable declarations (RIB requests:version,declare)
2
3 Static options and default attributes (image and display options,camera options)
4
5 Static camera transformations (camera location and orientation)
6
7 Frame block (if more than one frame)
8
9 Frame-specific variable declarations

10
11 Variable options and default attributes
12
13 Variable camera transforms
14
15 World block
16
17 (scene description)
18 User Entity (enclosed within AttributeBegin/AttributeEnd)
19 User Entity (enclosed within AttributeBegin/AttributeEnd)
20 User Entity
21 more frame blocks

Saturday, 23 October 2010

Rib file Structure
• This structure results from the vigourous application of the

following Scoping Conventions:

• No attribute inheritance should be assumed unless implicit in the
definition of the User Entity (i.e., within a hierarchy).

• No attribute should be exported except to establish either global
or local defaults.

• The RenderMan Specification provides block structuring to
organize the components of a RIB file.

• Although the use of blocks is only required for frame and world
constructs by the Specification, the liberal use of attribute and
transform blocks is encouraged.

Saturday, 23 October 2010

Attributes

• Attributes are flags and values that are part of the graphics state,
and are therefore associated with individual primitives.

• The values of these attributes are pushed and popped with the
graphics state.

• This is done with the AttributeBegin and AttributeEnd
commands

• The attribute block is the fundamental block for encapsulating
user entities.

Saturday, 23 October 2010

Attributes II
• Within an attribute block, the structure is simple. All attribute settings should

follow immediately after the AttributeBegin request.

• Geometric transformations are considered attributes in the RenderMan
Interface and should also precede any geometry.

• Depending on the internal architecture of the modeling software, user entities
may be described around a local origin. In this case, a modeling transformation
commonly transforms the entity from object space to world space.

• If this is not the case, the modeler will probably be working entirely in world
space and no modeling transform will be present.

• After setting all of the attributes for the entity, the geometry should
immediately follow

Saturday, 23 October 2010

Shading Rate
• This is probably the second most critical factor in the speed performance of

RenderMan (exceeded only by the resolution).

• This is due to two factors.

• First, it governs how often the shading language interpreter runs. Smaller
numbers mean the shaders must be evaluated at more places on the surface of
the primitives.

• Second, it governs how many polygons (micropolygons) are passed through the
hidden-surface algorithm.

• Smaller numbers mean more micropolygons, requiring more hidden-surface
evaluation and more memory to store temporary results.

• The end result of all this is that doubling the Shading Rate usually gets you
nearly twice the rendering speed. Pretty good!

Saturday, 23 October 2010

Shading Rate II

• The default for shading rate is 0.25, which is much smaller than is
necessary for most images.

• A much more typical number for final rendering is 1.0 to 4.0, and
test renderings can usually be done at 16.0 or even larger.

• What is the disadvantage?

• A shading rate that is too large tends to give blocky looking
colours and excessive blur on textures.

• The blockiness can often be alleviated by turning on Gouraud
shading with the ShadingInterpolation "smooth" call.

Saturday, 23 October 2010

Shading Rate III

• As long as the colour of an object changes slowly and smoothly
across its surface, this will look fine.

• Only if the surface has drastic colour changes, such as sharp-
edged patterns in its textures, will these results be
unsatisfactory.

• And an object with a shading rate of 16.0 and Gouraud shading
will render much faster than an object with a shading rate of 1.0.

Saturday, 23 October 2010

Shading Rate III

• One of the most important things to remember about the Shading Rate and
Shading Interpolation values is that they are Attributes.

• That is, they can be changed from one primitive to the next.

• So, if you have a finely patterned vase sitting in a room with flat white walls,
the vase can have a small shading rate (like 1.0) to capture its detail

• while the walls can have a very large shading rate (like 64.0) to save time
(with no visible problems).

• This is a very powerful technique that amounts to telling the renderer which
objects to spend time getting right and which objects are boring and can be
handled simply.

Saturday, 23 October 2010

Objects
• A single geometric primitive or a list of geometric primitives may be retained by

enclosing them with ObjectBegin and ObjectEnd.

• The RenderMan Interface allocates and re-turns an ObjectHandle for each
retained object defined in this way.

• This handle can subsequently be used to reference the object when creating
instances with ObjectInstance.

• Objects are not rendered when they are defined within an ObjectBegin-
ObjectEnd block; only an internal definition is created.

• Transformations, and even Motion blocks, may be used inside an Object block,
though they obviously imply a relative transformation to the coordinate system
active when the Object is instanced.

• All of an object's attributes are inherited at the time it is instanced, not at the
time at which it is created.

Saturday, 23 October 2010

1 #declare a string so we can refer to the Object by name

2 Declare "Spheres" "string"

3 # Now we actually create the Object

4
5 ObjectBegin "Spheres"

6 Sphere 1 -1 1 360

7 Translate 0 0 2

8 Scale 0.5 0.5 0.5

9 Sphere 1 -1 1 360

10 ObjectEnd

11
12 Display "min.tiff" "framebuffer" "rgba"

13 Projection "perspective" "fov" [30]

14
15 # start our world

16 WorldBegin

17 Translate 0 0 14 #move the global view position

18 Rotate 90 1 0 0

19 Color [1 0 0]

20 Attribute "identifier" "name" ["Spheres1"]

21 ObjectInstance "Spheres"

22 Color [0 1 0]

23 Translate 3.2 0 0

24 Attribute "identifier" "name" ["Spheres2"]

25 ObjectInstance "Spheres"

26 Color [0 0 1]

27 Translate -6.2 0 0

28 Attribute "identifier" "name" ["Spheres3"]

29 ObjectInstance "Spheres"

30 #end our world

31 WorldEnd

Saturday, 23 October 2010

Named Primitives
• It is occasionally useful to give names to individual primitives. For example,

when a primitive won't split at the eye plane (see Section 4.8 prman docs) it
can be desirable to know which primitive is causing the problem.This can be
done using the attribute identifier with the parameter name, as in:

1 RtString name[1] = {"Gigi"};
2 RiAttribute("identifier","name",(RtPointer)name,RI_NULL);
3
4 or
5
6 Attribute "identifier" "name" ["Spheres3"]

• All defined primitives will have this name until the graphics stack is popped (with
RiAttributeEnd) or another such RiAttribute call is made.

• The error message would then contain a reference to a specific primitive name
instead of the mysterious <unnamed>.

Saturday, 23 October 2010

Python ObjectBegin / End
• At present there is a bug in the python version of

ObjectInstance which does not allow rib file generation

• However it will work in direct mode where the rib stream
is fed directly into the renderer

• To do this we use the following

1 # if we use __render as the file name we go to
2 # immediate mode and the rib stream is passed directly to
3 # the renderer.
4 # if we specify framebuffer in the Dispalay option we render to screen
5 # if we specify file we render to file
6 filename = "__render"
7
8 ri.Begin(filename)

Saturday, 23 October 2010

1 ri = prman.Ri() # create an instance of the RenderMan interface
2 ri.Option("rib", {"string asciistyle": "indented"})
3
4 filename = "__render"
5 ri.Begin(filename)
6
7
8 #declare a string so we can refer to the Object by name
9 ri.Declare("Spheres" ,"string")

10 # Now we actually create the Object
11 ObjHandle=ri.ObjectBegin()
12 print ObjHandle
13 ri.Sphere(1,-1,1,360)
14 ri.Translate(0,0,2)
15 ri.Scale(0.5,0.5,0.5)
16 ri.Sphere(1,-1,1,360)
17 ri.ObjectEnd()
18
19
20 # start our world
21 ri.WorldBegin()
22 ri.Translate(0,0,14) #move the global view position
23 ri.Rotate(90,1,0,0)
24 ri.Color(colours["red"])
25 ri.Attribute ("identifier",{"name": "Spheres1"})
26 ri.ObjectInstance(ObjHandle)
27 ri.Color(colours["green"])
28 ri.Translate(3.2,0,0)
29 ri.Attribute("identifier",{ "name" :"Spheres2"})
30 ri.ObjectInstance(ObjHandle)
31 ri.Color(colours["blue"])
32 ri.Translate(-6.2,0,0)
33 ri.Attribute("identifier",{ "name" : "Spheres3"})
34 ri.ObjectInstance("%s"%(ObjHandle))
35 ri.ArchiveRecord("ribfile", "ObjectInstance " +ObjHandle)
36
37 #end our world
38
39 ri.WorldEnd()
40 # and finally end the rib file
41 ri.End()

ObjectBegin returns a handle
This is generated by prman and is
unique each time :
8a5644f8-8bae-11dd-9428-001b639ea4ff

We then use the Object Handle in the instance
call

Saturday, 23 October 2010

Options

• Options are parameters that affect the rendering of an entire
image.

• They must be set before calling WorldBegin, since at that point
options for a specific frame are frozen.

• The PRMan Quick Reference includes a table that summarizes
summarizes the options available in PhotoRealistic RenderMan.

• Note that some of the defaults listed can be overridden by
configuration files.

Saturday, 23 October 2010

Frame Buffer Control

• There are several options which can be enabled through the
parameter list of the RiDisplay call. These options, naturally
enough, influence the use of the display device.

• Output Compression

• The TIFF driver also accepts an option to set the compression
type, which may be "lzw", "packbits", "zip" (the default),
"pixarlog", or "none":

1 Display "min.tiff" "TIFF" "rgba" "compression" "lzw"

Saturday, 23 October 2010

OpenEXR Display Driver
• This driver supports OpenEXR, a high dynamic-range image,

floating point file format developed by Industrial Light & Magic.

• When using this display driver for rgba or Z output, you should
turn rgba and Z quantization off by using a floating point
Quantize statement, ie:

1 Quantize "rgba" 0 0 0 0
2 Quantize "z" 0 0 0 0
3
4 ri.Quantize("rgba",0,0,0,0)
5 ri.Quantize("z",0,0,0,0)

Saturday, 23 October 2010

OpenEXR Driver
• This display driver also supports the output of image channels other than

rgba using the Arbitrary Output Variable mechanisms.

• This driver maps Renderman's output variables to image channels as
follows:

output variable name image channel name type

"r" "R" preferred type
"g" "G" preferred type
"b" "B" preferred type
"a" "A" preferred type
"z" "Z" FLOAT
other same as output variable name preferred type

Saturday, 23 October 2010

Setting Display Parameters
• By default, the "preferred" channel type is the value float (32-bit).

• The preferred type can be changed by adding an "exrpixeltype" or "type"
argument to the Display command in the RIB file.

• Compression defaults to "zip"

• You can select a different compression method by adding an "exrcompression"
argument or simply the "compression" argument to the Display command.

1 # Store point positions in HALF format

2 Display "Points.exr" "openexr" "P" "string exrpixeltype" "half"

3 ri.Display("Points.exr", "openexr", "P" ,{"string exrpixeltype" :"half"})

1 # Store RGBA using run-length encoding
2 Display "rle.rgba.exr" "openexr" "rgba" "string exrcompression" "rle"
3 ri.Display("rle.rgba.exr", "openexr", "rgba" ,{"string exrcompression" :"rle"})

Saturday, 23 October 2010

Search Paths
• PhotoRealistic RenderMan searches specific paths for shader

definitions, texture map files and Pixar Looks® masters and
instances.

• The search path is a colon-separated list of directories that are
used in searching for files.

• Example

1 Option "searchpath" "string shader" ["/mapublic/shaders"]

2
3 ri.Option("searchpath", {"string shader":"/mapublic/shaders"})

Saturday, 23 October 2010

Search Paths

• The valid search paths are:

• shader :- Used by the renderer to find all shader .slo files.

• texture :- Used by the renderer to find all texture files.

• archive :- Used by the renderer to find RIB archives.

• procedural :- Used by the renderer to find procedural primitive
DSOS.

• display :- Used by the renderer to find display drivers.

Saturday, 23 October 2010

ReadArchive

• The ReadArchive command allows us to read another rib file
into the current position of the RIB stream

1 ri.Begin(filename)

2 ri.Option("searchpath", {"string archive":"./Archive/"})

3
4 ri.Attribute ("identifier",{"name": "Wave1"})

5 ri.ReadArchive("Archive.rib")

6
7
8 Option "searchpath" "string archive" ["./Archive/"]

9
10 Attribute "identifier" "name" ["Wave1"]

11 ReadArchive "Archive.rib"

Saturday, 23 October 2010

• Archives may also be specified within the current rib file using the
following

1 ArchiveBegin "Wave"
2 Rotate 90 1 0 0
3 Sphere 0.030303 -0.030303 0 360
4 Torus 0.0606061 0.030303 0 180 360
5 Torus 0.121212 0.030303 180 360 360
6 Torus 0.181818 0.030303 0 180 360
7 Torus 0.242424 0.030303 180 360 360
8 Torus 0.30303 0.030303 0 180 360
9 Torus 0.363636 0.030303 180 360 360

10 Torus 0.424242 0.030303 0 180 360
11 Torus 0.484848 0.030303 180 360 360
12 Torus 0.545455 0.030303 0 180 360
13 Torus 0.606061 0.030303 180 360 360
14 Torus 0.666667 0.030303 0 180 360
15 Torus 0.727273 0.030303 180 360 360
16 Torus 0.787879 0.030303 0 180 360
17 Torus 0.848485 0.030303 180 360 360
18 ArchiveEnd
19
20 WorldBegin
21 Attribute "identifier" "name" ["Wave1"]
22 ReadArchive "Wave"
23 WorldEnd

1 ri.Begin(filename)
2
3 ri.ArchiveBegin("Wave")
4 ri.Rotate(90,1,0,0)
5 ri.Sphere(0.030303,-0.030303,0,360)
6 ri.Torus(0.0606061,0.030303,0,180,360)
7 ri.Torus(0.121212,0.030303,180,360,360)
8 ri.Torus(0.181818,0.030303,0,180,360)
9 ri.Torus(0.242424,0.030303,180,360,360)

10 ri.Torus(0.30303,0.030303,0,180,360)
11 ri.Torus(0.363636,0.030303,180,360,360)
12 ri.Torus(0.424242,0.030303,0,180,360)
13 ri.Torus(0.484848,0.030303,180,360,360)
14 ri.Torus(0.545455,0.030303,0,180,360)
15 ri.Torus(0.606061,0.030303,180,360,360)
16 ri.Torus(0.666667,0.030303,0,180,360)
17 ri.Torus(0.727273,0.030303,180,360,360)
18 ri.Torus(0.787879,0.030303,0,180,360)
19 ri.Torus(0.848485,0.030303,180,360,360)
20 ri.ArchiveEnd()
21
22 ri.Attribute ("identifier",{"name": "Wave1"})
23 ri.ReadArchive("Wave")

Saturday, 23 October 2010

Procedural Geometry
• The torus wave in the last examples was generated from an

example in the renderman companion

• The function was re-written from the original C into python as
shown below

1 def TorusWave(ri,nwaves,thetamax) :
2 if(nwaves < 1) :
3 print "need positive number of waves"
4 return
5 innerrad = 2.0/(8.0 * nwaves +2)
6 ri.Rotate(90.0,1.0,0.0,0.0)
7 ri.Sphere(innerrad,-innerrad,0,thetamax)
8 outerrad =0.0
9 for wave in range(1,nwaves) :

10 outerrad=outerrad+(innerrad*2)
11 ri.Torus(outerrad,innerrad,0.0,180.0,thetamax)
12 outerrad=outerrad+(innerrad*2)
13 ri.Torus(outerrad,innerrad,180.0,360.0,thetamax)
14

1 ri = prman.Ri()
2
3 filename = "Archive.rib"
4 ri.Begin(filename)
5
6 TorusWave(ri,8,360.0)
7 # and finally end the rib file
8 ri.End()

Saturday, 23 October 2010

Creating Sequences
• Renderman allows for sequences of frames to be created within

the rib structure by using FrameBegin / FrameEnd

• However it is usually better to create a sequence of individual rib
files per frame as these can be distributed on the render farm.

• The best method for doing this is to use a frame counter and
export Rib / frame using the format file.###.rib ->
image.###.exr

1 for frame in range(1,30) :
2 filename = "Wave.%03d.rib" %(frame)
3 ri.Begin(filename)
4
5 ri.Display("ProcGeom.%03d.exr" %(frame), "file", "rgba")
6

Saturday, 23 October 2010

Exercise
• Try to build this Scene using python functions

Saturday, 23 October 2010

Saturday, 23 October 2010

References
• [1] Ian Stephenson. Essential Renderman Fast. Springer-Verlag, 2003.

• [2] Larry Gritz Anthony A Apodaca. Advanced Renderman (Creating
CGI for Motion Pictures). Morgan Kaufmann, 2000.

• Upstill S “The Renderman Companion” Addison Wesley 1992

• Renderman Documentation Appendix D - RenderMan Interface
Bytestream Conventions

• Application Note #3 How To Render Quickly Using PhotoRealistic
RenderMan

Saturday, 23 October 2010

