
Renderman Shaders
Shading Language and Basic Shaders

Renderman Shaders
• Renderman provides a number of different shader types all of which can be

written in the Shading Language (SL)

• These are as follows

• Surface Shaders describe the appearance of surfaces and how they react to
the lights that shine on them.

• Displacement Shaders describe how surfaces wrinkle or bump.

• Light Shaders describe the directions, amounts and colours of illuminations
distributed by a light source in the scene

• Volume Shaders describe how light is affected as it passes through a
participating medium such as smoke or haze.

• Other Renderer (such as BMRT) also support Image shaders

Shading Language 2.0
• As of Version 13.5 the shading language has changed to add the following

features

• Shader Objects and Co-Shaders

• Shaders can now have member variables and multiple methods. For
example, a surface shader can define displacement and opacity methods,
and share state with them via member variables.

• Shaders can call methods and read member variables of other shaders.

• Scene descriptions can now include co-shaders that allow custom shading
pipelines to be expressed in the shading language itself.

• These new features will be explored later in the course for now we will
concentrate on the basics.

What is a Shader
• A shader essentially asks the Question “What is going on a this spot”?

• The execution model of the shader is that the programmers are only
concerned with a single point on the surface and are supplying information
about that point

• This is know as an implicit model

• The job of a surface shader is to calculate the colour and opacity at a particular
point on some surface.

• To do this it may calculate any function, do texture map look-ups, gather light
and so on.

• The shader starts with a variety of information about the point being shaded
but cannot find out about any other points (although from Version 11 there is
now the ability to do this using the trace function)

The RM Shading Language
• The Renderman Shading Language is a C like language you can use to program

the behaviour of lights and surfaces. SL gives you :-

• basic types useful for manipulating points, vectors and colours

• mathematical, geometric and string functions

• access to the geometric state at the point being shaded, including the
position, normal, surface parameters, and amount of incoming light

• parameters supplied to the shader, as specified in the declaration of the
shader or alternatively attached to the geometry itself.

• With this information, the goal of the surface shader is to compute the
resulting colour, opacity and possibly the surface normal and / or position at a
particular point.

A simple Shader

1 surface plastic(float Ks=.5, Kd=.5, Ka=1, roughness=.1;
2 color specularcolor=1)
3 {
4 normal Nf;
5 vector V;
6 Nf = faceforward(normalize(N), I);
7 V = -normalize(I);
8 Oi = Os;
9 Ci = Os * (Cs * (Ka*ambient() + Kd*diffuse(Nf)) +

10 specularcolor * Ks * specular(Nf,V,roughness));
11 }

Data Types
Data type Description
float scalar floating point data (numbers)

point Three dimensional positions

vector directions

normal surface orientations

color Spectral reflective and light energy values

matrix 4 x 4 transformation matrix

string Character strings (usually for filenames)

Colours
• Colours are represented internally by 3 floating point components

• They are referred to by a colour space as follows

Colour Space Description

“rgb”
The co-ordinate system that all colours start out in and in which the
renderer expects to find colours that are set by your shader

“hsv” hue, saturation and value

“hsl” hue, saturation and lightness

“YIQ” The colour space used for the NTSC television standard

“xyz” CIE XYZ coordinates

“xyY” CIE xyY coordinates

Colours

• The examples show how colours may be set in various ways

• All the example return a value in rgb space, even the hsv version.

• To modify components of the colour variable we use the following

1 color black = color (0,0,0);
2
3 color green = color "rgb" (0,0,1);
4
5 color hsvcol = color "hsv" (0.2,0.5,0.63);
6
7 color white = 1; // set all components to 1

1 setcomp(white,0,0.3);

Points, Vectors and Normals
• Points, Vectors and Normals are similar data types with identical

structures but different semantics

• A Point is a position in 3D space

• A vector has a length and direction but does not exist in a
particular location

• A normal is a special type of vector that is perpendicular to a
surface and thus describes the surface's orientation.

1 point p1=point(0,2.3,1);
2 vector dir= vector(1,0,0);
3 normal NF = normal(0,1,0);

Co-ordinate Systems

• There are many different coordinate systems that the renderer
knows about.

• A Point in 3D can be represented by many different sets of 3D
numbers one for each co-ordinate system

• Typically all data passed to the shader are in the “current” co-
ordinate system however we can transform them to be in
different spaces by specifying the following in the construction of
the data type

Names of pre-declared geometric space

• “current” The co-ordinate system that all points start out in and
the one in which lighting calculations are carried out. Note that the
choice of current space may be different on each renderer.

• “object” The local co-ordinate system of the graphics primitives
(sphere, plane, patch etc) that we are shading.

• “shader” The co-ordinate system active at the time that the
shader was declared (by the Surface, Displacement or Lightsource
statement)

• “world” The coordinate system active at WorldBegin

Names of pre-declared geometric space

• “camera” The co-ordinate system with its origin at the centre of the camera
lens, x-axis pointing right, y-axis pointing up and the z-axis pointing into the
screen

• “screen” The perspective-corrected coordinate system of the camera's image
plane. Co-ordinate (0,0) in “screen” space is looking along the z-axis of
“camera” space

• “raster” The 2D projected space of the final output image, with units of
pixels. Co-ordinate (0,0) in “screen” space is the upper-left corner of the image
with x and y increasing to the right and down respectively

• “NDC” Normalised device coordinates- like raster space but normalised so
that both x and y range from 0 -1 .

Matrices

• SL has a matrix type that represents the transformation matrix.
Internally it is represented by 16 floats.

• Matrices are defined in row major order

• They can be tested for equality using == and !=

• * is used to multiply two matrices together

• m1/ m2 denotes multiplying the matrix by the inverse of matrix m2
thus a matrix can be inverted by writing 1/m

1 matrix zero =0; // a zero matrix
2
3 matrix ident = 1; set an identity matrix

Strings

• Strings are typically used to hold file names for textures, filenames
etc

• strings can be manipulated using the format() and concat() functions

1 string TextureName = "image1.tx"

Shading Language Variables

• These variable called either “global variables” or “graphics state
variables” contain the basic information that the renderer know
about the point being shaded.

• These include position, surface orientation, the default surface
colour.

• These variables do not have to be declared the are simply
available by default in the shader.

• Think of these as the communication between the shaders and
the renderer

Global variables available inside surface and displacement
shaders

Variable Description

point P Position of the point you are shading, Changing this variable displaces the surface

normal N The surface shading normal (orientation) at P. Changing N yields bump mapping

normal Ng
The true surface normal at P. This can differ from N; N can be overridden in various ways including bump-mapping and use-provided
normals, but Ng is always the true surface normal of the facet your are shading

vector I The incident vector, pointing from the viewing position to the shading position

color Cs Os The default surface colour and opacity, respectively

float u, v The 2D parametric co-ordinates of P (on the particular geometric primitive you are shading)

float s, t The 2D texturing co-ordinates of P. These values can default to u, v but a number of mechanisms can override these values

vector dPdu
vector dPdv

The partial derivatives (tangents) of the surface at P

time The time of the current shading sample

float du dv An estimate of the amount that the surface parameters u and v change from sample to sample

vector L
color Cl

These variables contain the information coming from the lights and may be accessed from inside illuminance loops only

color Ci, Oi The final surface colour and Opacity of the surface at P. Setting these two variables is the primary goal of a surface shader

Local Variables
• Local variables are the same as those used in C/ C++ and their

scope rules are also the same

• The optional class specifies either uniform or varying. If this is not
used it defaults to varying within the shader.

• Arrays in SL are only constant length and can only be 1 dimension

1 [class] type variablename [= initialiser]

1 float a; // declare a variable
2 uniform float b; // declare a variable as a uniform
3 float c=1; // declare and assign
4 float d= b*a;
5 float e[10];

Shader Parameters
• shader parameters allow the artist using the shader to have greater

control of the final image.

• If the elements within the shader are hard coded this means that
the shader will not be very flexible and we need redeveloping

• To overcome this problem we parametrise as much as possible the
internal values passed to the shader as shown in the example.

• We also try to set default “good” values for each parameter so the
user does not have to pass them but gets the option to override
them.

Shader
 Parameters

1 class Citrus(
2 float veining = 5;
3 float Ambient= 1;
4 float Kd = .65;
5 float Ks =0.5;
6 float Kx =200;
7 float Ky =300 ;
8 float roughness = .7;
9 float mix = .2;

10 float turbfreq = .02;
11 float SScale=100;
12 float TScale=100;
13 uniform color SpecColour=color "rgb" (0.600 ,0.200, 0.000);
14 float Km = 0.31;
15 varying float frequency = 0.5;
16 varying float amp = 0.5;
17 uniform color C1 = color "rgb"(0.957 ,0.612, 0.157);
18 uniform color C2= color "rgb" (0.588 ,0.345, 0.090);
19 uniform color C3 = color "rgb" (0.820 ,0.514, 0.000);
20 uniform color C4 = color "rgb" (1.000 ,0.902, 0.000);
21 float txtscale = 1;
22 float octaves = 6, omega = 0.35, lambda = 2;
23 float threshold = 2;
24 string BrickMap="";
25 color albedo = color(0.369 ,0.200, 0.000); // marble
26 color dmfp = color(0.084 ,0.165, 0.000); // marble
27 float ior = 1.3; // marble
28 float unitlength = 1.0; // modeling scale
29 float smooth = 1; // NEW for PRMan 14.0 !! (see sec. 4)
30 float maxsolidangle = 0.2; // quality knob: lower is better
31)

Renderman Shaders
• Shading in it's strictest term refers to calculating the interactions

of light with the surface

• This doesn't actually take into account the variations of
properties such as colour and roughness across the surface

• This is the actual texturing part of the shader and this part allows
the creation of the visual interest needed to create a realistic
surface

• The simplest way to approach the texturing elements of shaders
is to use the basic plastic model and then calculate an extra
texturing element to be modulated with the plastic surface
calculation

templateShader.sl
1 surface standard
2 (
3 float Ka=1;
4 float Kd=0.5;
5 float Ks=0.5;
6 float roughness = 0.1;
7 color specularcolor = 1;
8)
9

10 {
11 // init the shader values
12 normal Nf = faceforward(normalize(N),I);
13
14 vector V = -normalize(I);
15
16 color Ct;
17
18 // here we do the texturing
19 Ct=Cs;
20
21 // now calculate the shading values
22
23 Oi=Os;
24 Ci= Oi * (Ct * (Ka * ambient() + Kd *diffuse(Nf)) +
25 specularcolor * Ks * specular(Nf,V,roughness));
26 }

Initial Shader
values

Calculate Normal and
View Vectors

Generate texture
colours at this point

Shade the surface

templateShader.sl
•Ka The ambient reflection coefficient

•Kd The diffuse reflection coefficient

•Ks The specular reflection coefficient

• roughness The surface roughness used by the specular function

• specularcolor The colour of the specular highlight

• The shader is split into three section, the first calculates the
forward facing normal Nf and the Viewing Vector V

templateShader.sl

• The next section is configured for the texturing element of the
shader, a Colour Ct is created and the calculation of this value will
give us the surface texture at the point.

• The final section calculates the Opacity and the Colour for the
current pixel.

• At present this uses the standard plastic model but elements may
be changed to generate a different shading models based on any
BRDF

surface orientation

• The orientation of a surface at a point P is defined by the
surface normal N

• The direction the surface is being viewed from is defined in the
variable I

• The variable N tells us which way the surface is facing but in
most cases when shading we don’t really care so we can ensure
the normal as to always be facing towards us.

faceforward

• Flip N so that it faces in the direction opposite to I, from the
point of view of the current surface element.

• The surface element's point of view is the geometric normal
Ng, unless Nref is supplied, in which case it is used instead.

1 normal faceforward(vector N, I [, Nref = Ng])
2 {
3 return sign(-I.Nref) * N;
4 }
5
6
7 normal Nf = faceforward(normalize(N),I);

View Vector
• The direction towards the viewer is typically stored in a variable

called V.

• As we have the vector I which gives the direction from the eye
to the point on the surface we can simply calculate it by
reversing and normalising this vector

• This vector is typically used in specular surface calculations

1 vector V = -normalize(I);

• Illuminance is a looping construct which loops over all the lights
in the scene that are visible from the point being shaded.

• The 3 variables define a cone; any lights outside this cone are
excluded.

• Within this loop the variables Cl and L are available to gather
information about the light direction and colour

diffuse surface calculations
• The diffuse(normal N) function returns the diffuse component of

the lighting model. (Lambertian reflectance)

• N is a unit-length surface normal.

• Typically we multiply this value by Kd the diffuse co-efficient to
scale the diffuse contribution of the surface.

1 color diffuse(normal N)
2 {
3 color C = 0;
4 illuminance(P, N, PI/2)
5 C += Cl * normalize(L).N;
6 return C;
7 }
8
9 Ci =Kd *diffuse(Nf);

ambient light
• ambient returns the total amount of ambient light incident

upon the surface.

• An ambient light source is one in which there is no directional
component, that is, a light that does not have an illuminate or a
solar statement.

• Again we typically scale this value with an ambient coefficient
Ka

1 Ci=Ka * ambient();

specular

• Specular highlights can be generated using the specular
function

• Renderman has its own built in specular function as well
as access to a phong based model.

• Typically we scale the specular value using the
coefficient Ks and supply an additional specular colour.

1 Ci=specularcolor * Ks * specular(Nf,V,roughness);

• Returns the specular attenuation of light coming from the direction L,
reflecting toward direction V, with surface normal N and roughness,
roughness. All of L, V and N are assumed to be of unit length.

1 color specular(normal N; vector V; float roughness)
2 {
3 color C = 0;
4 illuminance(P, N, PI/2)
5 C += Cl * specularbrdf(normalize(L), N, V, roughness);
6 return C;
7 }
8
9 color specularbrdf(vector L, N, V; float roughness)

10 {
11 vector H = normalize(L+V);
12 return pow(max(0, N.H), 1/roughness);
13 }

Other BRDF models

• The previous model is very good for plastic and some
metal type materials

• however other material properties are not well suited
to this model.

• To model different surface materials we need to
develop different BRDF models.

Oren Nayar

• This model assumes rough surfaces to have microscopic
grooves and hills.

• These are modelled mathematically as a collection of
micro-facets having a statistical distribution of relative
directions.

• This allows us to model materials such as Clay, stone etc.

Oren Nayar

• where

Lr(r, i,!r −!i,") =
#

$
E0 cos i(A + B max(0, cos(!i −!r)) sin % tan &)

A = 1− 0.5
σ2

σ2 + 0.33

B = 0.45
σ2

σ2 + 0.09

α = max(θi, θr)

β = min(θi, θr)

is the reflectivity of the surface (Kd*Cs)ρ

Eo is the energy arriving from the light Cl
θi is the angle between the surface normal

and the direction of the light source
θr is the angle between the surface normal
and the vector in the direction of the viewer

φr − φi is the angle (about the normal) between
incoming and reflected light

Oren Nayar

 is the standard deviation of the angle distribution of the microfacets
(in radians). Larger values represent more rough surfaces; smaller values
represent smoother surfaces.
If ,the surface is perfectly smooth, and this function reduces to a
simple Lambertian reflectance model.
This parameter is called “roughness”

σ

σ = 0

1 color
2 LocIllumOrenNayar (normal N; vector V; float roughness;)
3 {
4 // Surface roughness coefficients for Oren/Nayar's formula
5 float sigma2 = roughness * roughness;
6 float A = 1 - 0.5 * sigma2 / (sigma2 + 0.33);
7 float B = 0.45 * sigma2 / (sigma2 + 0.09);
8 // Useful precomputed quantities
9 float theta_r = acos (V . N); // Angle between V and N

10 vector V_perp_N = normalize(V-N*(V.N)); // Part of V perpendicular to N
11
12 // Accumulate incoming radiance from lights in C
13 color C = 0;
14 extern point P;
15 illuminance (P, N, PI/2)
16 {
17 vector LN = normalize(L);
18 float cos_theta_i = LN . N;
19 float cos_phi_diff = V_perp_N . normalize(LN - N*cos_theta_i);
20 float theta_i = acos (cos_theta_i);
21 float alpha = max (theta_i, theta_r);
22 float beta = min (theta_i, theta_r);
23 C += 1 * Cl * cos_theta_i * (A + B * max(0,cos_phi_diff) * sin(alpha) *

tan(beta));
24 }
25 return C;
26 }

Ward Anistropic
• The Ward anistropic model describes a surface similar

to brushed metal where the machined grooves face in a
particular direction.

1√
cos θi cos θr

1
4παxαy

exp



−2

(
ĥ·x̂
αx

)2
+

(
ĥ·x̂
αy

)2

1 + ĥ · n̂





θi is the angle between the surface normal and the direction of the
light source

θr is the angle between the surface normal and the direction of the
viewer

Ward Anistropic
x̂ and ŷ are the two perpendicular tangent directions of the surface

αx and αy are the standard deviations of the slope in the x and y
directions called x and y roughness

n̂ is the unit surface normal normalize(N)

ĥ is the half angle between incident and reflection rays
H=normalize(normalize(-I)+normalize(L))

1 float sqr (float x) { return x*x; }
2
3 color LocIllumWardAnisotropic (
4 normal N; vector V;
5 vector xdir;
6 float xroughness;
7 float yroughness;
8)
9 {

10
11 float cos_theta_r = clamp (N.V, 0.0001, 1);
12 vector X = xdir / xroughness;
13 vector Y = (N ˆ xdir) / yroughness;
14
15 color C = 0;
16 illuminance (P, N, PI/2)
17 {
18 vector LN = normalize (L);
19 float cos_theta_i = LN . N;
20 if (cos_theta_i > 0.0)
21 {
22 vector H = normalize (V + LN);
23 float rho = exp (-2 * (sqr(X.H) + sqr(Y.H)) / (1 + H.N))
24 / sqrt (cos_theta_i * cos_theta_r);
25 C += Cl * (cos_theta_i * rho);
26 }
27 }
28 return C / (4 * xroughness * yroughness);
29 }

Creating a texture

• To calculate the texture information at each point on the surface
we need to know where we are on the surface

• This information is provided by two variables u and v which tell
how far across and up the surface the current point is

• • These values range from 0 to 1 in both directions (0 bottom
left) (1 top right)

• This works on most Renderman geometry types as they are
based on patches (4 corners)

s,t and u,v

• To access the texture co-ordinates in a shader the programmer has a choice
of either s,t or u,v

• by default these are identical, however these may be overridden by the
modeller as follows

1 Patch "bilinear"
2 "P" [-1 1 0 1 1 0 -1 -1 0 1 -1 0]
3 "st" [1 0.5 0 1 0 .5 .2 0]

• Within the shader if the variables u,v are used this will refer to the underlying
geometry (Renderman)

• if s,t are used these will be the user supplied (if any) values

Using s,t to create a Colour ramp

• A simple ramp shader is a simple as using the following expression

• or for Colour

• for different colour space we could do the following

1 Ct = s; or Ct = t;

1 Ct =s*Cs; or Ct=t*Cs;

1 Ct = color "hsv" (s,t,1);

Colour Blends

• If we wish to blend two colours we can use simple linear
interpolation between the current colour (Cs) and another user
defined colour BlendColour

• This can be done in two ways

• or using the built in mix function

1 color BlendColour = color "rgb" (0,1,0);
2 Ct = (1-s)*Cs+s*BlendColour;

1 Ct=mix(Cs,BlendColour,s);

Putting it all together
1 surface RampShader(
2 color BlendColor = color "rgb" (0,1,0);
3 float orientation = 0;
4 float Ka=1;
5 float Kd=0.5;
6 float Ks=0.5;
7 float roughness = 0.1;
8 color specularcolor = 1;
9)

10 {
11 // init the shader values
12 normal Nf = faceforward(normalize(N),I);
13 vector V = -normalize(I);
14
15
16 color Ct;
17
18 // here we do the texturing
19 if(orientation ==0)
20 Ct=mix(Cs,BlendColor,s);
21 else
22 Ct=mix(Cs,BlendColor,t);
23 // now calculate the shading values
24 Oi=Os;
25 Ci= Oi * (Ct * (Ka * ambient() + Kd *diffuse(Nf)) +
26 specularcolor * Ks * specular(Nf,V,roughness));
27 }

Bands
• The simplest pattern to create in a shader is a simple Band

between two colours

• This works but can cause problems as the line is very sharp and
could cause aliasing

• The easiest way is not to use sharp transitions but use a smooth
blend between colour values

1 color red=color "rgb" (1,0,0);
2 color blue=color "rgb" (0,1,0);
3 if(t<0.5)
4 Ct=red;
5 else
6 Ct=blue;

Smoothstep

• smoothstep returns 0 if value is less than min, 1 if value is greater
than or equal to max, and performs a smooth Hermite
interpolation between 0 and 1 in the interval min to max.

• When using versions of these operators that work on colour
arguments, the operation is applied on a component by
component basis.

1 float smoothstep(float min, max, value)
2 float smoothstep(color min, max, value)

Using smoothstep to create fuzzy lines
1 surface Band(
2 color C1 = color "rgb" (1,0,0);
3 color C2 = color "rgb" (0,0,1);
4 float begin=0.3;
5 float end=0.6;
6 float Ka=1;
7 float Kd=0.5;
8 float Ks=0.5;
9 float roughness = 0.1;

10 color specularcolor = 1;
11 float Orient=0;
12)
13 {
14 // init the shader values
15 normal Nf = faceforward(normalize(N),I);
16 vector V = -normalize(I);
17
18 // here we do the texturing
19 color Ct;
20 float inTop;
21 if (Orient==0)
22 inTop = smoothstep(begin,end,s);
23 else
24 inTop = smoothstep(begin,end,t);
25
26 Ct=mix(C1,C2,inTop);
27 // now calculate the shading values
28 Oi=Os;
29 Ci= Oi * (Ct * (Ka * ambient() + Kd *diffuse(Nf)) +
30 specularcolor * Ks * specular(Nf,V,roughness));
31 }

Lines
• if you want to produce a vertical line in the centre of the object you

first need to find the distance of the point from the centre

• We use the function abs to throw away the +/- sign as we don't
care which side of the line were on

• If we wanted the line to be 0.2 wide then if dist is less than 0.1 we
are considering a point on the line

• The following shader allows for the line to be of varying thickness
and orientation

1 float dist = abs(s-0.5)

1 surface Lines
2 (
3 color LineColor = color "rgb" (1,0,0);
4 color MixColor = color "rgb" (1,1,1);
5 float fuzz = 0.025;
6 float LineSize=0.1;
7 float Ka=1;
8 float Kd=0.5;
9 float Ks=0.5;

10 float roughness = 0.1;
11 color specularcolor = 1;
12 float Orient=0;
13 float offset=0.5;
14)
15 {
16 // init the shader values
17 normal Nf = faceforward(normalize(N),I);
18 vector V = -normalize(I);
19 color Ct;
20
21 // here we do the texturing
22 float inTop;
23 float dist;
24 if(Orient==0)
25 dist=abs(t-offset);
26 else
27 dist=abs(s-offset);
28 float inLine;
29
30 inTop=1-smoothstep(LineSize/2.0-fuzz,LineSize/2.0+fuzz,dist);
31 Ct=mix(MixColor,LineColor,inTop);
32
33
34 // now calculate the shading values
35
36 Oi=Os;
37 Ci= Oi * (Ct * (Ka * ambient() + Kd *diffuse(Nf))
38 + specularcolor * Ks * specular(Nf,V,roughness));
39
40 }

User Specified Lines
• To define an arbitrary line we need to specify the start and end

positions

• To calculate this we use the following

• Returns the minimum perpendicular distance between the point Q
and the line segment that passes from the point P1 to the point P2
(not the infinite line which passes through P1 and P2)

1 float ptlined(point P1, P2, Q)

1 point Here = point(s,t,0);
2
3 float dist=ptlined(StartPos,EndPos,Here);
4 float inLine = smoothstep(0.1-fuzz,0.1+fuzz,dist);
5
6 Ct=mix(Cs,LineColor,inLine);

1 surface UserLines
2 (
3 color LineColor = color "rgb" (1,0,0);
4 float LineSize=0.01;
5 float Ka=1;
6 float Kd=0.5;
7 float Ks=0.5;
8 float roughness = 0.5;
9 color specularcolor = 1;

10 point P1= point "shader" (0.1,0.7,0);
11 point P2= point "shader" (0.7,0.7,0);
12 float fuzz = 0.025;
13)
14 {
15 // init the shader values
16 normal Nf = faceforward(normalize(N),I);
17 vector V = -normalize(I);
18
19 // here we do the texturing
20 color Ct=Cs;
21 // we need this point in shader space so it is on the surface of

the
22 // object we are shading
23 point Here = point "shader" (s,t,0);
24 float dist=ptlined(P1,P2,Here);
25 float inLine = 1-smoothstep(LineSize/2.0-fuzz,LineSize/2.0+fuzz,

dist);
26 Ct=mix(Ct,LineColor,inLine);
27
28 Oi=Os;
29 Ci= Oi * (Ct * (Ka * ambient() + Kd *diffuse(Nf))
30 + specularcolor * Ks *specular(Nf,V,roughness));
31
32 }

Disks
• To create a coloured disk we can use decide if the point is in or

outside the disk by using Pythagorus

• an alternative to using this is the distance function as shown in the
following example

1 float dist = sqrt((s-0.5)*(s-0,5) *(t-0.5)*(t-0.5));

1 color Ct=Cs;
2 point here = point(s,t,0);
3
4 float dist=distance(center,here);
5 float inDisk=1-smoothstep(0.3-fuzz,0.3+fuzz,dist);
6
7 Ct=mix(Ct,DiskColour,inDisk);

1 surface Disk
2 (
3 float Ka=1;
4 float Kd=0.5;
5 float Ks=0.5;
6 float roughness = 0.1;
7 color specularcolor = 1;
8 color DiskColour = color "rgb" (1,1,1);
9 point center = point "shader" (0.5,0.5,0.0);

10 float fuzz=0.025;
11 float Radius = 0.5;
12)
13 {
14 // init the shader values
15 normal Nf = faceforward(normalize(N),I);
16 vector V = -normalize(I);
17
18 // here we do the texturing
19 color Ct=Cs;
20 point here = point "shader" (s,t,0);
21 float dist=distance(center,here);
22 float inDisk=1-smoothstep(Radius/2.0-fuzz,Radius/2.0+fuzz,dist);
23 Ct=mix(Ct,DiskColour,inDisk);
24 // now calculate the shading values
25
26 Oi=Os;
27 Ci= Oi * (Ct * (Ka * ambient() + Kd *diffuse(Nf))
28 + specularcolor * Ks * specular(Nf,V,roughness));
29
30 }

• A very simple way to repeat patterns is by dividing up the s and t
values of the section being textured.

• To do this we can use the mod function as follows

• Then any calculation which used the values of s or t now use the
ss or tt versions

Repeating things

1 float ss=mod(s*RepeatS,1);
2
3 float tt=mod(t*RepeatT,1);

1 surface Disk
2 (
3 float Ka=1;
4 float Kd=0.5;
5 float Ks=0.5;
6 float roughness = 0.1;
7 color specularcolor = 1;
8 color DiskColour = color "rgb" (1,1,1);
9 point center = point "shader" (0.5,0.5,0.0);

10 float fuzz=0.025;
11 float Radius = 0.5;
12 float RepeatS=5;
13 float RepeatT=5;
14)
15 {
16 // init the shader values
17 normal Nf = faceforward(normalize(N),I);
18 vector V = -normalize(I);
19
20 // here we do the texturing
21 color Ct=Cs;
22 float ss=mod(s*RepeatS,1);
23 float tt=mod(t*RepeatT,1);
24
25 point here = point "shader" (ss,tt,0);
26 float dist=distance(center,here);
27 float inDisk=1-smoothstep(Radius/2.0-fuzz,Radius/2.0+fuzz,dist);
28 Ct=mix(Ct,DiskColour,inDisk);
29 // now calculate the shading values
30
31 Oi=Os;
32 Ci= Oi * (Ct * (Ka * ambient() + Kd *diffuse(Nf))
33 + specularcolor * Ks * specular(Nf,V,roughness));
34
35 }

References
• [1] Ian Stephenson. Essential Renderman Fast. 2nd Edition. Springer-

Verlag, 2007.

• [2] Larry Gritz Anthony A Apodaca. Advanced Renderman (Creating
CGI for Motion Pictures). Morgan Kaufmann, 2000.

• S.K. Nayar and M. Oren, "Generalization of the Lambertian Model
and Implications for Machine Vision". International Journal on
Computer Vision, Vol.14, No.3, pp.227-251, Apr, 1995

Further reading

• http://en.wikipedia.org/wiki/Oren%E2%80%93Nayar_diffuse_model

• RSL Function in the renderman documentation

• Application Note #17 Converting Shaders to use new Shading Language
Features

• New Shading Language Features (2008) Renderman Documents

http://en.wikipedia.org/wiki/Oren%E2%80%93Nayar_diffuse_model
http://en.wikipedia.org/wiki/Oren%E2%80%93Nayar_diffuse_model

