
INTRODUCTION TO L INUX

JONATHAN MACEY

September 27, 2005

BOURNEMOUTH MEDIA SCHOOL

Contents

1 Introduction to Unix 1
1.1 Reasons for the success of Unix 1

1.1.1 Portable Operating System Interface (POSIX) 1
1.2 Login .. . 2

1.2.1 The super user (root) 2
1.2.2 Other System accounts 2
1.2.3 User Accounts .. . 2
1.2.4 Home Directory .. . 2

2 The Unix Shell 3
2.1 Different Unix Shells 3
2.2 Using the Shell (bash) 3

2.2.1 File Name Completion 4
2.2.2 History .. 4

2.3 Shell examples 4
2.4 Changing the bash prompt 5

2.4.1 Creating a default prompt 6
2.5 Aliasing commands 6

2.5.1 Making aliases permanent 6
2.5.2 unalias .. 7
2.5.3 dos to unix alias 7

2.6 ctrl+z and bg 7
2.7 ctrl +c stopping processes 7
2.8 Shell movement commands 7

2.8.1 clear andreset . 8
2.9 Getting Help 8

2.9.1 Man page sections 8
2.10 Where am I? and Who am I? 9
2.11 System Processes 10

2.11.1 Listing processes 10
2.11.2 Killing processes 12
2.11.3 more, cat and indirection 13
2.11.4 Using cat .. . 13

2.12 Changing passwords 14

3 The Unix File system 15
3.1 Studio file system structure 15
3.2 File permissions 16

3.2.1 The file type .. 16
3.2.2 Unix file access control 16
3.2.3 Other file attributes 17

3.3 umask . 18

i

CONTENTS CONTENTS

3.4 File system navigation 18
3.4.1 Making directories 19
3.4.2 Moving and re-naming files 20

3.5 File utilities 20
3.5.1 Finding files and text within files 21
3.5.2 Symbolic links 21

3.6 Creating archives using tar 22
3.6.1 tar command line options . 22
3.6.2 creating atar file . 23
3.6.3 Viewing the contents of atar file . 23
3.6.4 adding to atar file . 23
3.6.5 Extracting atar archive . 23
3.6.6 Updating atar file . 24

3.7 Compressing files 24
3.7.1 compress .. 24
3.7.2 gzip / gunzip .. . 24
3.7.3 bzip2 / bunzip2 25
3.7.4 .tgz files .. . 26

4 Unix networking 27
4.1 Exploring a network 27

4.1.1 Netstat .. 27
4.2 Remote login with ssh 27
4.3 Copying files to different machine (scp) 28

A Unix Commands 29

B DOS to Unix translation 35

(c) J.P. Macey 2005 ii

List of Tables

2.1 Unix Signals 12

2.2 Actions for signal 12

3.1 File types 16

3.2 Octal file mode 17

iii

Chapter 1

Introduction to Unix

Unix was developed in the 1970s at AT & T Bell Laboratories as acomputer science exercise. Over the past
thirty years it has evolved into arguably the most popular computer operating system in the world, running
on the fastest supercomputers, the largest mainframes, themost popular minis, most graphics workstations
and the more powerful microcomputers; and in the last five years in the guise of Linux, Free BSD and Intel
Solaris onto many P.C. level machines.

1.1 Reasons for the success of Unix

• Written in C - the system is portable, modifiable and relatively easy to understand.

• Systems shell - provides a simple and effective user interface.

• Software reuse - simple primitives can be built up into new and powerful command tools.

• Hierarchical file structure - consistent, efficient and easily maintained.

• Byte oriented I/O - gives consistent file formats and allows device independence and easy redirection.

• Multi-user, multi-tasking - many users and many processes per user and per machine.

• Machine architecture hidden - allowing for portability of programs between Unix systems.

• Unix offer Portability, Flexibility, Power and Elegance.

1.1.1 Portable Operating System Interface (POSIX)

Posix is a set of standard operating system interfaces basedon the Unix operating system. The need for
standardisation arose because of enterprises using computers wanted to be able to develop programs that
could be used on different manufacturers computers withoutbeing re-coded. Unix was selected as the
basis for a standard system interface partly because it was "manufacturer neutral". However, several major
versions of Unix existed so there was a need to develop a common denominator system.

Informally, each standard in the POSIX set is defined by a decimal following the POSIX. Thus POSIX.1
is the standard for an application program interface in the Clanguage. POSIX.2 is the standard shell and
utility interface (i.e. the users command interface with the operating system). These are the main POSIX
interfaces however there are others such as POSIX.4 for thread management. These standards are now
followed for most Unix / Linux versions and many components of Windows are now POSIX compliant.

1

1.2. LOGIN CHAPTER 1. INTRODUCTION TO UNIX

1.2 Login

As Unix is a secure system all users must have a username and a password to enter the system. There are
various user accounts on a Unix system each having differentlevels of access to the system.

1.2.1 The super user (root)

Theroot user, also know as the ’Super User’ has full access to every part of the system.root is allowed to
modify any part of the file system and create and destroy processes at will. Asroot is a very powerful ac-
count the use of theroot user is heavily restricted on most systems and only certain systems administrators
are given the password.

1.2.2 Other System accounts

There are other standard Unix logins on most systems with varying levels of access to the system. Some
of these are used for administration purposes such asadmin, deamonandlp. Other accounts such asguest
andftp are setup on a system to allow users to login with limited access to the system. Theftp account is
generally used for anonymousftp where the user logs into the system using anftp client and the default
usernameftp and the password as the (remote) users email address.

1.2.3 User Accounts

User accounts are designed for the every day use of Unix systems users, they generally have a number of
restrictions which by default are as follows

• Limited access to file system

• Reduced ability to run certain programs

• No / restricted access to hardware configurations

The main reason for this is to maintain the security and integrity of the system, it is easy for some of
these restrictions to be removed but it is unwise to give a standard user account access to more powerful
commands as this can compromise the integrity of the system.Therefore if a user is to have more powerful
access right they should be given another administration type account to deal with system administration
duties.

1.2.4 Home Directory

When a user first logs onto a Unix system, the working directory is know as the home directory. With a
default Linux installation a users home directory is in the following place

/masters/<username>

Where <username> is the name the user logs on with

It is also important to note the direction of the directory separator ’/’ in a Unix file system / indicates the
root of the file system. Every directory mounted fromroot (/) is followed by another /. This is unlike the
windows file system where every directory is mounted from thedrive letter (e.g. C:\) and the directory
separator used is the ’\’.

(c) J.P. Macey 2005 2

Chapter 2

The Unix Shell

Graphical environments for Unix have been around for many years and many complex tasks can be
achieved from the GUI, so why do we need a shell in a Unix environment? For one thing it is gener-
ally faster to use the shell prompt to accomplish tasks than it is to open up a file manager move to the
directory and copy the files. Also not all users have the ability to open up a GUI based program, for exam-
ple if the user is running atelnetsession from a windows machine the only way to interact with the system
is to use the shell prompt.

2.1 Different Unix Shells

There are a variety of different shells available under Linux of which some are listed below

• Standard shell (sh)

• Bourne Again Shell (bash)

• C Shell (csh)

• Turbo C shell (tcsh)

Each of these shells have different features, however most modern shells feature the following basic oper-
ations

• File name completion

• History

• Doskey type command selection

• built in scripting languages

2.2 Using the Shell (bash)

When a console or terminal session is run a program called a shell is used to interpret the commands typed
and execute them. The default shell installed on the systemsis calledbash .

3

2.3. SHELL EXAMPLES CHAPTER 2. THE UNIX SHELL

2.2.1 File Name Completion

One of the most useful features is know as file name completion, this allows part of a file name or directory
to be typed and a key pressed to complete the rest of the file name. Inbashthe tab key is used to complete
the file name.

For example if there is a file calledexample1.cin the directory by typingmore efollowed by a tab the file
name would be completed. However if there are several files called example1.c example2.candexample3.c
typing more efollowed by a tab would givemore exampleafter this pressing the tab again would list all
of the files with the textexampleIf 2 is then typed and tab pressed again the whole file name would be
completed.

2.2.2 History

History records the most recent commands typed in the shell so the user may re-use them. The simplest
method of using history is to type the shell command history which will give a recent list of all the com-
mands typed preceded by a number. To execute a previous command from the history list use the! character
followed by the number (note that there is no space between the ! and the number) of the command from
the history list.

To execute the last command typed in the shell the following short cut may be used!! followed by enter.

To execute the last command beginning with a specific character (for example ifmorewas typed)

!m followed by enter.

Finally the up and down arrow key may be used to traverse the history list one command at a time.

2.3 Shell examples

The following example demonstrates the use of file name completion in the shell

#touch example1.c

The touchcommand creates an empty file with the nameexample1.c. By typing moreand pressing the
TAB key the following will be displayed

#more example1.c

Now we press the up arrow twice to get back to thetouchcommand and create two more files called
example2.candexample3.c

#touch example2.c
#touch example3.c

Now if we typemore eand the TAB key twice we get the following display

example1.c example2.c example3.c
#more example

By typing 3 and then TAB again the the filenameexample3.cwill be completed.

(c) J.P. Macey 2005 4

CHAPTER 2. THE UNIX SHELL 2.4. CHANGING THE BASH PROMPT

2.4 Changing the bash prompt

When executing interactively,bashdisplays the primary promptPS1when it is ready to read a command,
and the secondary promptPS2when it needs more input to complete a command.Bashallows these prompt
strings to be customised by inserting a number ofbackslash-escapedspecial characters that are decoded as
follows:

\a anASCIIbell character (07)

\d the date in "Weekday Month Date" format (e.g., "Tue May 26")

\e anASCIIescape character (033)

\h thehostnameup to the first ‘.’

\H thehostname

\j the number ofjobscurrently managed by the shell

\l the basename of the shell’s terminal device name

\n newline

\r carriage return

\s the name of the shell, the basename of $0 (the portion following the final slash)

\t the current time in 24-hour HH:MM:SS format

\T the current time in 12-hour HH:MM:SS format

\@ the current time in 12-hour am/pm format

\u theusernameof the current user

\v the version ofbash(e.g., 2.00)

\V the release ofbash, version + patchlevel (e.g., 2.00.0)

\w the current workingdirectory

\W the basename of the current workingdirectory

\! the history number of this command

\# the command number of this command

\$ if the effectiveUID is 01, a #, otherwise a $

$ \nnn the character corresponding to the octal number nnn

\\ a backslash

\[begin a sequence of non-printing characters, which couldbe used to embed a terminal control
sequence into the prompt

\] end a sequence of non-printing characters

1The root user

(c) J.P. Macey 2005 5

2.5. ALIASING COMMANDS CHAPTER 2. THE UNIX SHELL

2.4.1 Creating a default prompt

There are two files which may be edited to set thePS1andPS2variables. One file will be set for all users
who log into the system, the other file will be specific to the user when they log in. The global file is
/etc/profileand the user file is found in the root of the usersHOME directory and is called.bashrc. If a
.bashrcfile contains aPS1andPS2variable then this will override the global profile.

For example to change the default prompt to display theusername, the basename of the current working
directory and the$ prompt if the user is a normal user or# if the user isroot the followingPS1string can
be set in the console using theexportcommand

export PS1="[\u:\W]\$"

This will result in the users prompts looking as follows

[jmacey:Unixcourse]$

Using theexportcommand in the console will set thePS1string for as long as the console is running. To
make this change permanent the command may be placed into the.bashrcor the/etc/profilesystem files
and the command will then be executed each time the shell is run.

2.5 Aliasing commands

Aliases allow a string to be substituted for a word when it is used as the first word of a simple command.
The shell maintains a list of aliases that may be set and unsetwith thealiasandunaliasbuilt in commands.
Aliases are created and listed with the alias command, and removed with the unalias command.

For example therm command will by default remove the files passed to it without prompting. To allow
the default behaviour ofrm to prompt the user for a yes / no when deleting files the user could typerm -i.
However this can be time consuming so using thealiascommand the user can set therm to always runrm
-i. This is done as follows.

alias rm="rm -i"

No when typingrm the following will be shown

rm test.sh
rm: remove ‘test.sh’?

Pressingy will delete the file andn will leave it.

2.5.1 Making aliases permanent

As with the setting the default promptaliasesmay be made permanent by adding them either to the
/etc/profileor the .bashrcfiles. When changes are made to these files they do not become active until
the file has been re-interpreted. This will happen if the shell is closed and re-run or by using thesource
command as follows

source ~/.bashrc

Typing thealiascommand without any arguments will list all of the aliased commands set on the system.

(c) J.P. Macey 2005 6

CHAPTER 2. THE UNIX SHELL 2.6. CTRL+Z AND BG

2.5.2 unalias

To remove any aliases set on the system theunaliascommand is used as follows

unalias rm

2.5.3 dos to unix alias

The following set of commands can be placed into the.bashrcfile to create a set ofdosto unixcommands.

alias dir="ls"
alias "dir/w"="ls -al"
alias "dir/p"="ls |more"
alias type="more"
alias copy="cp"
alias rn="mv"
alias rename="mv"
alias del="rm -i"
alias attrib="chmod"
alias md="mkdir"
alias help="man"
alias chkdsk="df -k"
alias print="lpr"

2.6 ctrl+z and bg

Sometimes when using the shell a command is run and the& is not used; if this command is a GUI based
program the shell will lose it’s interactivity and all commands typed will have no effect. This is because
the program run now has control of the console and no more commands may be typed until this program is
terminated.

To overcome this problem thebashcontains facilities to access the operating systems job control system
by typing the suspend character (typically^Z, CTRL-Z) while a process is running this causes that process
to be stopped and returns control tobash.

The user may then manipulate the state of this job, using thebgcommand to continue it in the background,
thefg command to continue it in the foreground, or thekill command to kill it.

A ^Z takes effect immediately, and has the additional side effect of causing pending output and type ahead
to be discarded.

2.7 ctrl +c stopping processes

Sometimes a process will either hang in a terminal or will notstop execution, if this happens the process
can be interrupted with thectrl+c key combination if this fails to work the kill control keyctrl +u may be
used.

2.8 Shell movement commands

When using the command line in the shell it is possible to moveleft and right within the current command
being typed with the arrow keys. TheBkSpandDel key may be used to delete in the left and right direction
respectively, and the following keys may also be used for navigation.

(c) J.P. Macey 2005 7

2.9. GETTING HELP CHAPTER 2. THE UNIX SHELL

ctrl+a Move to the start of the current line.

ctrl+e Move to the end of the line.

ctrl+f Move forward a character.

ctrl+b Move back a character.

ctrl+f Move forward to the end of the next word. Words are composed ofalphanumeric characters
(letters and digits).

alt+b Move back to the start of the current or previous word. Words are composed of alphanumeric
characters (letters and digits).

ctrl+l Clear the screen leaving the current line at the top of the screen.

2.8.1 clear and reset

clear is used to clear the console / terminal and return the cursor to the top. This is similar to typingctrl+l
in bash.

Sometimes the terminal window will become scrambled and nonprinting characters will replace the usual
characters2. The easiest way of resetting the console if this happens is by use of theresetconsole command.

2.9 Getting Help

Unix contains a comprehensive help system calledmanThe word man stands for manual, a series of on-
line pages which can tell the user the purpose of many commands. Themanpages provide a summary of
a command’s purpose, the options available and the syntax which is used to issue the command. All man
pages are formatted in the same way to give a consistent look and feel, this means that once the user is
familiar with the format it is easy to quickly extract the relevant information from the man pages.

2.9.1 Man page sections

All man pages are split into the following sections

Name
Synopsis
Description
Options
See Also

TheNameand theSynopsissections give a brief description of the command being looked up.

The descriptionsection gives a more detailed explanation of the command andits uses, as most Unix
commands have a variety of command line options these are listed next in theoptionssection.

Finally related or similar commands are listed in theSee Alsosection. These commands will have their
own man pages which may be examined by using themancommand again with the different command
name.

The following page shows the manual page for thetouch3 utility with all of the different sections.

2This usually happens when usingmoreon a binary file.
3Note this is for the GNU / Linux version of touch

(c) J.P. Macey 2005 8

CHAPTER 2. THE UNIX SHELL 2.10. WHERE AM I? AND WHO AM I?

TOUCH(1) FSF TOUCH(1)
NAME

touch - change file timestamps
SYNOPSIS

touch [OPTION]... FILE...
DESCRIPTION

Update the access and modification times of each FILE to
the current time.

-a change only the access time

-c, –no-create
do not create any files

-d, –date=STRING
parse STRING and use it instead of current time

-f (ignored)
-m change only the modification time
-r, –reference=FILE use this file’s times instead of current
-t STAMP

use [[CC]YY]MMDDhhmm[.ss] instead of current time
–time=WORD

set time given by WORD: access atime use (same as
-a) modify mtime (same as -m)

–help display this help and exit
–version

output version information and exit
Note that the three time-date formats recognized for the -d and -t options and for the obsolescent argument are all different.

AUTHOR
Written by Paul Rubin, Arnold Robbins, Jim Kingdon, David
MacKenzie, and Randy Smith.

REPORTING BUGS
Report bugs to <bug-fileutils@gnu.org>.

SEE ALSO
The full documentation for touch is maintained as a Texinfo manual. If the info and touch programs are properly installedat your site,

the command

Man pages are formatted to be displayed in the console if printed versions are required they must be
formatted to remove any non printable characters as follows

#man touch | col -b | lpr

The above command is actually a compound command where the output of one command is fed into the
input of another command. First themancommand is used to print out themanpage. This is then fed into
the commandcol -busing the| . Thecol -bcommand removes any backspaces from the output of the man
command. Finally the output of thecol command is sent to the printer using thelpr command.

2.10 Where am I? and Who am I?

As a unix system is usually a distributed operating system with many users it is important to be able to
identify who the user is, which machine the user is on an whereon the machine the user is. To do this the
following commands are used

id, hostname, who, pwd

#id
uid=1549(jmacey) gid=100(users)
#

The basic output from theid command is shown above, this gives information about the user id (uid) which
is a numeric value with the names in brackets. Next the group id is shown (gid) this is the primary group
the user belongs to and finally any supplementary group the user belongs to (if none this information is
omitted).

(c) J.P. Macey 2005 9

2.11. SYSTEM PROCESSES CHAPTER 2. THE UNIX SHELL

#hostname
rh1610
#

Thehostnamecommand prints out the name of the machine that the user is currently logged into.

#who
jmacey :0 Oct 17 11:59
u9573564 pts/1 Oct 17 18:30
#

Thewhocommand prints out the names of the users currently logged onto the system. As more than one
user may be logged into the system at any one time this commandis useful for finding out who is on the
system. For more detailed information about a user logged onthe system thefingercommand may be used
as follows

#finger jmacey
Login: jmacey Name: Jonathan Macey
Directory: /home/jmacey Shell: /bin/bash
On since Tue Oct 17 11:59 (BST) on :0 (messages off)
On since Tue Oct 17 18:30 (BST) on pts/1 from :0
On since Tue Oct 17 21:34 (BST) on pts/2 from :0

6 seconds idle
No mail.
Plan:

The plan section of thefinger output is created by the user using a file called .plan createdin the users
home directory. This is useful for telling other users on thesystem what you are doing however on some
distributed systems (like the University) this will not work due to the way the file system has been setup
for security reasons.

Finally to find out where in the file system you are thepwdcommand may be used as follows

#pwd
/cgstaff/jmacey

pwdprints out the current file system location relative to theroot directory.

2.11 System Processes

Every time a program is executed on a Unix system it is given a unique integer id. This is known as
the process id orpid. Only the user who has created a process can modify this process, this is know as
ownership. The only exception to this rule is theroot user who has the ability tokill any process created
by any user.

2.11.1 Listing processes

To list processes thepscommand is used as follows

(c) J.P. Macey 2005 10

CHAPTER 2. THE UNIX SHELL 2.11. SYSTEM PROCESSES

#ps
PID TTY TIME CMD
7073 pts/1 00:00:00 bash
7161 pts/1 00:00:00 xclock
7371 pts/1 00:00:00 ps

#

The output of thepscommand only shows the processes running from the current terminal with the current
user. However with the use offlagsmore processes may be shown

#ps -ef
UID PID PPID C STIME TTY TIME CMD
root 1 0 0 11:57 ? 00:00:06 init [5]
root 6 1 0 11:57 ? 00:00:00 [mdrecoveryd]
root 61 1 0 11:58 ? 00:00:00 [khubd]
daemon 442 1 0 11:58 ? 00:00:00 /usr/sbin/atd
root 468 1 0 11:58 ? 00:00:00 [cardmgr]
root 514 1 0 11:58 ? 00:00:00 [pump]
lp 515 1 0 11:58 ? 00:00:00 [lpd]
root 563 1 0 11:58 ? 00:00:00 sendmail: accepting connections
root 579 1 0 11:58 ? 00:00:01 gpm -t ps/2
root 594 1 0 11:58 ? 00:00:00 crond
xfs 627 1 0 11:58 ? 00:00:00 xfs -droppriv -daemon
root 659 1 0 11:58 ? 00:00:00 rhnsd --interval 30
root 682 1 0 11:58 ? 00:00:00 [gdm]
root 688 682 9 11:58 ? 00:59:57 /usr/bin/X11/X -auth /var/gdm/:0
jmacey 6893 1 1 15:39 ? 00:04:45 /office52/program/soffice.bin
jmacey 7073 7069 0 18:30 pts/1 00:00:00 bash
jmacey 7161 7073 0 19:56 pts/1 00:00:00 xclock
jmacey 7263 7069 0 21:34 pts/2 00:00:00 bash

This list now contains all of the processes on the system as the -ef flags tellsps to show all processes (-e)
and format it in a long output (-f)

It is possible that there may be many processes on the system and sometimes these will take up many pages
of the terminal screen. To overcome this problem we can feed the output ofps into themoreutility as
follows

#ps -ef | more

The output ofpswill now be shown a page at a time and the space bar may be used toselect the next page
of the output.

It is sometimes desirable to select processes by another criteria such asusernameto do this we can feed
the output ofps into thegrepcommand as follows

#ps -ef | grep jmacey
UID PID PPID C STIME TTY TIME CMD
jmacey 738 1 0 11:59 ? 00:00:44 sawfish --sm-client-id=default2
jmacey 817 1 0 11:59 ? 00:00:06 xscreensaver -no-splash -timeout
jmacey 6893 1 1 15:39 ? 00:04:45 /office52/program/soffice.bin
jmacey 7073 7069 0 18:30 pts/1 00:00:00 bash
jmacey 7161 7073 0 19:56 pts/1 00:00:00 xclock
jmacey 7263 7069 0 21:34 pts/2 00:00:00 bash

The grep command is used to find regular expressions in text. So in the above example all lines of text
which contain the textjmaceyare printed out. There is an alternative command calledpgrepwhich does a
similar thing to the command above

(c) J.P. Macey 2005 11

2.11. SYSTEM PROCESSES CHAPTER 2. THE UNIX SHELL

#pgrep -lu jmacey
7073 bash
7161 xclock
7263 bash

pgrepprints out thepid and thenameof the process and the flag-l tells pgrepto print out the name of the
program running and -u<username>specifies the user to look for.

2.11.2 Killing processes

Sometimes it is desirable to stop a process from running on the system, to do this two things are required.
Firstly thepid of the process must be known and secondly the user trying to kill the process must either
own the process or be theroot user.

Thekill command works by sending asignal to the currently running process, depending upon thesignal
sent the process will respond in different ways. A list of thecommonsignalsare shown in table 2.1.

Signal Value Action Comment

SIGHUP 1 A Hangup detected on controlling terminal or death of process
SIGINT 2 A Interrupt from keyboard

SIGQUIT 3 C Quit from keyboard
SIGILL 4 C Illegal Instruction

SIGABRT 6 C Abort signal from abort (3)
SIGFPE 8 C Floating point exception
SIGKILL 9 AEF Kill signal
SIGSEGV 11 C Invalid memory reference
SIGPIPE 13 A Broken pipe: write to pipe with no readers

SIGALRM 14 A Timer signal from alarm (2)
SIGTERM 15 A Termination signal
SIGCHLD 20,17,18 B Child stopped or terminated
SIGCONT 19,18,25 Continue if stopped

Table 2.1: Unix Signals

The letters in the "Action" column of table2.1 are shown in table2.2.

Action Description
A Default action is to terminate the process.
B Default action is to ignore the signal.
C Default action is to terminate the process and dump core.
D Default action is to stop the process.
E Signal cannot be caught.
F Signal cannot be ignored.

Table 2.2: Actions for signal

Usually the SIGKILL (-9) signal is used tokill a process as this will try to shut the process down properly,
however sometimes processes do not respond to akill -9 and the commandkill -15 must be used.

The following example shows how ps and kill can be used in combination

(c) J.P. Macey 2005 12

CHAPTER 2. THE UNIX SHELL 2.11. SYSTEM PROCESSES

#xload & xload& xload &
[6] 1371
[7] 1372
[8] 1373

This command will run 3 copies of the programxload. Notice that the & is used at the end of the call to
xload, this tells the program to detach itself from the console andrun as a separate process. If this was not
used the console would not be available until thexloadprogram had completed.

Now we can look for the pid of thexloadprocesses by using the following command (note that thepid will
be different for each system this example is run on)

#ps | grep xload
1373 pts/4 0:00 xload
1373 pts/4 0:00 xload
1373 pts/4 0:00 xload
1373 pts/4 0:00 xload
#

Now we cankill thexloadprograms by using thekill -9 command as follows

#kill -9 1371
[7] killed xload
#

This can then be repeated for each of the different pid’s of thexloadprocesses. However it is also possible
to kill many processes at the same time by the use of thepkill command as follows

#pkill -9 xload

This command will kill all processes calledxloadwith a signal-9, as long as the user calling the process
either owns the process or isroot.

2.11.3 more, cat and indirection

The following section shows how unix commands can be connected together by use of indirection. This
has already been seen with the use of the pipe (|) feeding the output ofps into thegrepcommand. Unix
also allows the output of a program to be fed into a file by usingthe> or > > operators.

2.11.4 Using cat

Thecat command has many uses and can operate in a number of ways, firstly it can operate in a similar
fashion tomoreas follows

#cat /etc/passwd

This will print out the contents of the file/etc/passwdto the console. However another use for thecat
command is in combination with the> operator as follows

(c) J.P. Macey 2005 13

2.12. CHANGING PASSWORDS CHAPTER 2. THE UNIX SHELL

#cat /etc/passwd > pass.txt
#cat pass.txt

This will create a file in the current directory callpass.txtwhich contains the contents of the/etc/passwd
file.

It must be noted that every time the> command is used the resultant file is recreated from scratch.If the
file is to be added to (concatenated) the> > operator is used as follows

#cat /etc/hosts >> pass.txt
#cat pass.txt

cat can also be used with multiple file arguments as follows

#cat /etc/hosts /etc/passwd > p2.txt
#cat p2.txt

cat can also be used with the standard input as a simple line editor, as follows

#cat > test.txt

This putscat into line editor mode where each line of text can be edited until the return key is pressed
which will then start a new line of the file.

To quit this modectrl + c must be pressed which will save the file. The file can then be viewed using the
following command

#cat test.txt

2.12 Changing passwords

To change your password thepasswdcommand is used as follows,

passwd Old password: enter your current password
New password: enter your new password
Retype new password: re-enter your new password

The passwords will not appear on the screen as you type, to prevent other people from seeing them. If you
make a mistake, the message

Mismatch - password unchanged.

is displayed and your password remains unchanged. If the system uses a NIS or YP the call topasswdwill
call theyppasswdto change the password, however this will take some time to synchronise with theNIS
database and will not take effect until theNIShas been re-made.

(c) J.P. Macey 2005 14

Chapter 3

The Unix File system

The unix file system follows a hierarchical structure with all disks and devices mounted from a common
source. This common source is know asroot and is usually depicted using a forward slash (/) and all
directories hang off of this one common root. This is also true if the system has more than one disk as this
will be mounted on to theroot file system and will appear as a directory.

The file system can be drawn as a tree like structure as shown infigure 3.1 and most unix implementations
have a similar layout.

/ root

/bin /dev /lost+found /sbin

/usr

/bin /lib/include/X11/local /man

/etc

Figure 3.1: Unix File system

3.1 Studio file system structure

The following list show important directories in the Linux Studios at the NCCA

/masters - home dirs of all students

/mapublic - masters public usually used for staff to place important lecture files

/cgstaff - staff home dirs

/tmp - temp directory used by some applications

/transfer - scratch areas for large files and project, usefulfor sharing work and local machine access to data
(important all people have access to this and it is cleared ona regular basis)

/media - various mount point areas.

15

3.2. FILE PERMISSIONS CHAPTER 3. THE UNIX FILE SYSTEM

IMPORTANT : your home directories are not backed up on any server so work that is deleted will be
lost. It is your responsibility to make archives of work on either DVD or external hard drives.

3.2 File permissions

Each file has a number ofattributesassociated with it. These may be seen by using thels (list files)
command as follows

#ls -l
-rw------- 1 jmacey other 0 Nov 29 14:33 example1.c
-rw------- 1 jmacey other 0 Nov 29 14:33 example2.c
-rw------- 1 jmacey other 0 Nov 29 14:33 example3.c
-rw-r--r-- 1 jmacey users 849 Oct 24 12:00 pass.txt

This listing may be a bit confusing at first but it is broken down into the following sections starting with
the first column.

3.2.1 The file type

The first character of the first column indicates the file type and the characters in table 3.1 are used.

Type Description
- Indicates a regular file
d Indicates a directory
c Indicates a character mode special device file
b Indicates a block mode special device file
p Indicates a FIFO (or named pipe) used for inter process communication
l Indicates a symbolic link

Table 3.1: File types

Some versions of unix extend these types to show whether filesare symbolic links, and whether they are
network mounted or not.

3.2.2 Unix file access control

Immediately following the file type character are nine characters that indicate the permissions by which the
users and their processes can access the file. These characters consist of three sets of the characters,rwx
wherer indicates the read permissions,w indicates write permissions, andx indicates execute permissions.

The first set of permissions grant access to the owner of the file, the second set grants permissions to the
group associated with the file (by default this is the same group as the owner of the file) and the third set
grant permissions to all other users of the system (sometimes know as world permissions).

The following example shows a file listing

#ls -l
-rwxr-x--- 1 jmacey users 849 Oct 24 12:00 test.sh

(c) J.P. Macey 2005 16

CHAPTER 3. THE UNIX FILE SYSTEM 3.2. FILE PERMISSIONS

In the above example the filetest.shhas read, write and execute permissions for the owner of the file (in
this case the user jmacey), read and execute permissions forthe group (in this case the group users) and
finally no access for all other users (no permissions in this case is indicated by the use of the -).

To make it easy to set all the file permission attributes of a file at once without having to specifyr,w andx
individually, the numbers 0 - 7 have been assigned to a user, group and world. The original authors of unix
found this handy shorthand notation as this mapping corresponded to the octal numbering system prevalent
in the computer world of the time, this system is shown in table 3.2

Octal Mode
0 —
1 –x
2 -w-
3 -wx
4 r–
5 r-x
6 rw-
7 rwx

Table 3.2: Octal file mode

To change these file permissions thechmodcommand is used with the octal values above, as shown in the
following example

#cat >test.sh
ls -al
[ctrl + c]
#ls -l test.sh

-rw-r--r-- 1 jmacey users 849 Oct 24 12:00 test.sh

The above example creates a file calledtesh.shwhich contains the linels -l. Looking at the file permissions
the file hasrw for the user andr for the other groups. As this file contains a unix command it could be
made executable and executed as a simple script (similar to ados batch file). To do this we have to give the
file execute permissions as follows

#chmod 750 test.sh
#ls -l test.sh
-rwxr-x--- 1 jmacey users 849 Oct 24 12:00 test.sh

This command gives the filerwx permissions for the userr-x for the group and none for the world. This
file can now be executed and is run by typing the name of the file as follows

#test.sh

3.2.3 Other file attributes

After the file access control bits the output ofls -l shows the number of links to the file, followed by the
name of the user and group associated with the file. This is followed by the size of the file (in bytes), the
date the file was last modified and the name of the file itself.

All of these attributes can be changed using standard unix commands however most of these are not avail-
able to standard users and for the most part they can only be changed by theroot user.

(c) J.P. Macey 2005 17

3.3. UMASK CHAPTER 3. THE UNIX FILE SYSTEM

#chown root test.sh

Changes the owner of the filetest.shto root, this command can also be used to change the user and the
group in one go as follows

#chown root:root test.sh

After the username the group can be added by using the : alternatively thechgrpcommand can be used to
change only the group as follows

#chgrp root test.sh

Important Note :
The above commands will not work correctly as the user must beroot to change ownership. It
must also be noted that if a file is copied that belongs to another user the file file’s ownership
will be modified to that of the user copying the file. Thereforefor most systems and usages
the chmod and chgrp commands are not required.

3.3 umask

By default the creation of files will have set permissions. This is usually set torwxr-xr-x on most systems.
To set the the default file creation mask to something different theumaskfunction is used.

This is built into thebashshell and is used as follows

umask [-p] [-S] [mode]

The user file creation mask is set to mode. If mode begins with adigit, it is interpreted as an octal number;
otherwise it is interpreted as a symbolic mode mask similar to that accepted bychmod. If mode is omitted,
the current value of the mask is printed. The-Soption causes the mask to be printed in symbolic form; the
default output is an octal number. If the-p option is supplied, and mode is omitted, the output is in a form
that may be reused as input. The return status is 0 if the mode was successfully changed or if no mode
argument was supplied, and false otherwise.

3.4 File system navigation

We have already seen some file system navigation commands, two of the most useful beingpwd (print
working directory) andls (list files). The following section uses these commands in conjunction with other
commands to navigate the file system and create new directories.

To move within the unix file system thecdcommand is used,cd is exactly the same as the doscdcommand
and is used to change directories, however it also has a few additional features which makes it more flexible.

To start with the following example changes directory to theroot of the file system

#cd /
#pwd
/

#cd
#pwd
/home/jmacey/

(c) J.P. Macey 2005 18

CHAPTER 3. THE UNIX FILE SYSTEM 3.4. FILE SYSTEM NAVIGATION

The firstcd changes to the root of the file system, this can be verified by using thepwd command. After
this cd with no argument is typed. This command will return to the users home directory which can be
verified by the use of thepwdcommand again.

This is very useful as wherever in the file system the user is they can change back to their home directory
by just typingcd.

3.4.1 Making directories

To create a directory you must have permissions to the parentdirectory in which you wish to create the
directory in. This is a security feature to restrict access to the file system. Therefore for most cases users
only make directories in their home directory. The only exception to this is theroot account who can make
directories in any part of the file system and then grant permissions to other users to use the directories
using thechgrpandchowncommands.

The following example shows how a user can make a directory

#mkdir test
#cd test
#pwd

/cgstaff/jmacey/test

These commands make a directory calledtestand thencd is used to change into the directory. It is also
possible to make a directory tree using the following command

#cd
#mkdir -p test/another/another2

This will make a directory tree creating the directories if they don’t exist.

To remove a directory thermdir command is used as follows

#cd ~/test/another
#rmdir another2

The first command changes to the directory/cgstaff/jmacey/test/another/however the~/ is used. This is
unix short hand for "from the home directory". Then thermdir command is used to remove the directory
another2.

It must be noted that the directory and any subsequent sub-directories must be empty to use thermdir
command. If the whole directory tree and files in the directory are to be removed the following command
is used

#cd
#rm -rf test

This command recursively (-r) traverses the directory tree and deletes all files and directories without
prompting the user (-f).

Important Note :
The rm command and especially the rm -rf command must be used with caution as there is
no undo or undelete function in unix.

(c) J.P. Macey 2005 19

3.5. FILE UTILITIES CHAPTER 3. THE UNIX FILE SYSTEM

Therm command may also be used to delete files on a singular basis as follows

#touch 1.c 2.c 3.c 4.c 5.c
#rm 1.c

The first command creates 5 files witha .c extension. Thenrm is used passing the name of the file to be
deleted. Wild cards may also be used to delete files as in the following example

#rm *.c

This will delete all files with a.c extension.

Important Note :
The * wildcard on its own means “all files” this can be dangerous when used in conjunction
with the rm command especially rm -rf * which will delete recursively all files from the current
directory downwards

3.4.2 Moving and re-naming files

The unix commandmv (move) has a dual purpose, it can either be used to rename a fileor directory or it
can be used to move a file or directory. The following examplesshow how it can be used.

#touch 1.c
#mv 1.c 2.c

The first a file is created called1.c. This is then renamed by using themvcommand

#mkdir test
#mv test test2

In the above example a directory calledtest is created, next this is renamed totest2by using themv
command.

#touch 1.c 2.c 3.c 4.c 5.c
#mv *.c test2
#cd test2
#ls

In this example 5.c files are created and then all files with a.c extension are moved into thetest2directory
using themvcommand.

3.5 File utilities

There are a number of file system utilities which give information about the state and usage of the file
system.

The following command shows the disk usage of the file systemsshowing each of the disk partitions
mounted on theroot file system

(c) J.P. Macey 2005 20

CHAPTER 3. THE UNIX FILE SYSTEM 3.5. FILE UTILITIES

#df -k
Filesystem 1k-blocks Used Available Use% Mounted on
/dev/hda2 2016044 1659360 254272 87% /
/dev/hda7 940788 723204 169796 81% /home
/dev/hda1 2574972 1478100 1096872 58% /windows

In the above example the output of df is shown in K blocks, and the amount used and available is shown.
This is also summarised as a percentage of disk spaced used for each of the partitions.

To show the overall disk usage of a directory and sub directories theducommand is used as follows

#du -k

This command prints out a total number of bytes used in all of all the directories in the tree and a total of
all of the files at the end. However using thedu -kscommand will putdu into silent mode and print out
only the total amount of bytes used by the directory. For moredetailed information about a file thefile
command can be used this prints out the type of the file as follows

#file test.sh
test.sh: commands text

3.5.1 Finding files and text within files

To find files within the unix file system thefind utility is used as follows

#find ./ -name "*.c"
1.c
2.c
3.c

The find command has the ability to execute other commands passing the name of the file found as an
argument to the executed command. This is shown in the example below

#find /etc -name "*" -exec grep -l root {} \;

In this example the find command is pointed to the/etcdirectory and told to find all files (*). next the
-execflag is used to indicate that another command is to be executedfollowed by the command. In this
case it is thegrepcommand with the flags-l and the text to search for asroot.

Where the file name would usually come in thegrepcommand the{} braces appear, this indicates where
the output of the find should put the file name. Finally the\; terminates the command.

3.5.2 Symbolic links

Files do not actually reside inside directories. A directory is a file that contains references to other files.
The directory holds two pieces of information about each file:

• Its filename

(c) J.P. Macey 2005 21

3.6. CREATING ARCHIVES USING TAR CHAPTER 3. THE UNIX FILE SYSTEM

• An inode number which acts as a pointer to where the system canfind the information it needs about
this file.

Filenames are only used by the system to locate a file and its corresponding inode number. This correspon-
dence is called alink. To the system, the file is theinodenumber. Multiple filenames can be used to refer to
the same file by creating a link between an inode and each of thefilenames. The following example shows
how this work

#mkdir source
#cd source
#touch 1.c 2.c 3.c 4.c 5.c
#cd ..
#ln -s source dest
#cd dest
#ls
1.c 2.c 3.c 4.c 5.c 6.c

First we make a directory calledsource, we then change into the directory and make some files. Next we
change to the directory below and create a symbolic link, using theln command.

The directory now has a new directory entry which is a link to thesourcedirectory. Changing into thisdest
directory it appears to be the same as the source and any changes made to either will be reflected in the
other directory. It is also possible to make symbolic links to individual files using the ln command and this
is used by systems administrators to rename files for commonality and backwards compatibility.

3.6 Creating archives using tar

In earlyunixsystems the only method of backup was the use of magnetic tape. The method of backing up
to a tape was to use the tape archive (tar) utility which would mount the tape drive and either extractor
create and archive to the tape. Howevertar also has the ability to create an archive on a specified directory
not just a tape so it is still used to create backup (or archives) in modernunixsystems.

tar works by creating a an archive file containing all of the files in the directory to be archived. This means
that thetar file will be the same size as the total of all the files in the directory.

3.6.1 tar command line options

tar has a number of command line options to change the way it works, these are shown below

-d find differences between archive and file system

–delete delete from the archive (not for use on mag tapes!)

-r append files to the end of an archive

-t list the contents of an archive

-u only append files that are newer than copy in archive

-x extract files from an archive

-f<F> use archive file or device F (default /dev/rmt01)

1the tape device

(c) J.P. Macey 2005 22

CHAPTER 3. THE UNIX FILE SYSTEM 3.6. CREATING ARCHIVES USINGTAR

-i ignore blocks of zeros in archive (normally mean EOF)

-k keep existing files; don’t overwrite them from archive

-K begin at file F in the archive

-v verbosely list files processed

-w ask for confirmation for every action

-z filter the archive through gzip2

3.6.2 creating atar file

To create atar archive of a directory the following command will be used

tar cfv mydir.tar mydir

First thetar command is issued with the flagscfvwhich tells tar to create an archive (c), using the filename
passed (f) and print out the files being added (v). Next the archive name is passed, in this casemydir.tar
and finally the name of the directory to be archived (mydir).

3.6.3 Viewing the contents of atar file

To view the contents of atar archive the -t flag is used as follows

tar tf mydir.tar

Which will list out the contents of thetar file to the console.

3.6.4 adding to atar file

To add more files to thetar file ther flag is used passing it the name of the directories to be added as follows

tar fvr mydir.tar newdir

This will then add the contents of thenewdirdirectory to the archivemydir.tar.

3.6.5 Extracting atar archive

To extract atar file thex flag is used. When extracting a tar file the directory structure in thetar archive
will be re-created. This means that any files in an existing directory with the same name as that of one in
the archive will be replaced by default. To extract atar archive the following commands are used

tar vfx mydir.tar

To ensure that files are not overwritten the-k flag may be used which will only extract files which are not
in the directory, this is used as follows

tar vfxk mydir.tar

2Only works with gnu tar

(c) J.P. Macey 2005 23

3.7. COMPRESSING FILES CHAPTER 3. THE UNIX FILE SYSTEM

3.6.6 Updating atar file

To modify atar file to include newer versions of a file already contained within the archive and add any
newly created file theu flag is used as follows

tar -fvu mydir.tar newdir

3.7 Compressing files

As mentioned in section 3.6 atar archive creates an archive by joining all files in the directory together into
one file. These files can become very large and will take up lotsof disk space. To make these files smaller
compression may be used.

Under mostunix systems there are many different compression tools which will compress files. The most
common of these arecompress, gzipandbzip2.

3.7.1 compress

Thecompressutility is found on most unix systems and will compress files using using adaptive Lempel-
Ziv coding. Whenever possible, each file is replaced by one with the extension .Z, while keeping the same
ownership modes, access and modification times.

To compress thetar archivemydir.tar the following commands will be used

compress mydir.tar

This will result in a file calledmydir.tar.Zbeing created. To uncompress this file theuncompressutility
may be used as follows

uncompress mydir.tar.Z

Which will result in the filemydir.tarwhich may then be extracted using thetar utility.

3.7.2 gzip / gunzip

A newer compression utility is thegnu gzip/ gunzipset of tools. It uses Lempel-Ziv coding (LZ77).
Whenever possible, each file is replaced by one with the extension.gz, while keeping the same ownership
modes, access and modification times.

gunzip can also decompress files created bygzip, zip, compress, compress -Hor pack. It will also work on
some windows based.zip. files.

To compress a file usinggzipthe following command line is used

gzip mydir.tar

Which will result in the filemydir.tar.gz.To unzipthe file the following command is used

gunzip mydir.tar.gz

(c) J.P. Macey 2005 24

CHAPTER 3. THE UNIX FILE SYSTEM 3.7. COMPRESSING FILES

3.7.3 bzip2 / bunzip2

bzip2compresses files using the Burrows-Wheeler block sorting text compression algorithm, and Huffman
coding. Compression is generally considerably better thanthat achieved by more conventional LZ77/LZ78-
based compressors, and approaches the performance of the PPM family of statistical compressors.

The command-line options are deliberately very similar to those of GNU gzip, but they are not identi-
cal. bzip2expects a list of file names to accompany the command line flags. Each file is replaced by
a compressed version of itself, with the name "original_name.bz2". Each compressed file has the same
modification date, permissions, and, when possible, ownership as the corresponding original, so that these
properties can be correctly restored at decompression time.

bzip2attempts to guess the filename for the decompressed file from that of the compressed file as follows:

• filename.bz2 becomes filename

• filename.bz becomes filename

• filename.tbz2 becomes filename.tar

• filename.tbz becomes filename.tar

• anyothername becomes anyothername.out

If the file does not end in one of the recognised endings,.bz2, .bz, .tbz2or .tbz, bzip2complains that it
cannot guess the name of the original file, and uses the original name with.outappended.

To compress a file usingbzip2the following command line is used

bzip2 mydir.tar

Which will result in a file calledmydir.tar.bz2being created. To extract this file the following command
line is used

bunzip2 mydir.tar.bz2

(c) J.P. Macey 2005 25

3.7. COMPRESSING FILES CHAPTER 3. THE UNIX FILE SYSTEM

3.7.4 .tgz files

It is quite common to get files with the extension .tgz this is acombined tar gzipped archive and may be
uncompressed and extracted using one command as follows

tar vfxz GraphicsCode.tgz

To create a gzipped tar archive (useful for course work submission) change to the directory you wish to
archive and do the following

tar vfcz MyArchive.tgz *

This will create the directory structure from the current file system position. If you wish to archive a
directory just specify the directory name as follows

tar DirArchive.tgz MyDir

(c) J.P. Macey 2005 26

Chapter 4

Unix networking

Unix has a large variety of networking utilities and as with most Unix system most of the information about
networks is held in a series of text files.

4.1 Exploring a network

The simplest way to explore a network is using theping utility this uses theICMP protocol’s mandatory
ECHO_REQUESTdatagram to elicit anICMP ECHO_RESPONESfrom a host or a gateway.

ping is used at the command line by typingping [host] which will return the response [host] is alive. By
use of command line options ping may be configured to send multiple requests to test the integrity of the
network (man pingfor more details)

ping is intended for use in network testing, measurement and management. Because of the load it can
impose on the network, it is unwise to use ping during normal operations or from automated scripts.

4.1.1 Netstat

netstatis used to find information about the status of a network. It will give information on network
connections, routing tables, interface statistics, and other networking information.

The different command line options fornetstatdiffer in each Unix version so for current command line
options read the man pages.

4.2 Remote login with ssh

ssh (Secure Shell) is a program for logging into a remote machine and for executing commands on a remote
machine. It allows the user access to any machine on the network that they have login permission to and
will let you execute commands (an applications) from the remote machine.

The first time ssh is run for a different machine it ask if you would like to add it to the list of machines
available (just press return); the next time this is not asked for.

To login to another machine use the following

ssh rh1610

you will then be prompted for you password and then you will belogged into the remote machine at your
home directory.

27

4.3. COPYING FILES TO DIFFERENT MACHINE (SCP) CHAPTER 4. UNIX NETWORKING

4.3 Copying files to different machine (scp)

The scp utility copies files between hosts on a network. It uses ssh for data transfer, and uses the same
authentication and provides the same security as ssh.

To copy from a remote host to the current directory the following commands are used

scp-r rh1617:/transfer/jmacey/* ./

This will copy recursively the contents of the directory /transfer/jmacey from the machine rh1617 to the
current directory on the local machine. You will be promptedfor a password then all the files will be
copied. rcp is similar to cp and uses most of the same syntax.

To copy from the current machine to a different machine the following syntax is used

scp-r * rh1617:/transfer/jmacey/

(c) J.P. Macey 2005 28

Appendix A

Unix Commands

Command 1: cd [dir]

Usage :
change directory

Flags :
no flags

Examples :
cd /etc changes to the etc directory
It must be noted that cd is built into the shell

Command 2: chmod [options] mode files

Usage :
change the access mode of one or more files. Only the owner of the file or a super user may change the mode

Flags :
-R recursively descend directory arguments whilst settingmodes

File permissions are set on the basis of User Group and world and each section may have a Read Write
and eXecute bit set. These are set using an octal number for each of the three groups. To set each bit the
following values are used

4 Read
2 Write
1 Execute

A fourth bit may be set which precedes the User Group World flags. These use the following octal values

4 sets the user ID on execution
2 Set the group ID on execution
1 set sticky bit

Examples :
chmod 700 * set all files to have rwx permissions for owner and no permissions for group and world

29

APPENDIX A. UNIX COMMANDS

chmod 755 * set file permissions to rwxr-xr-x for all files

Command 3: cp [options] file1 file2
cp [options] files directory

Usage :
Copy file1 to file2 or copy one or more files to the same names to a directory

Flags :
-i interactive mode (prompts for y/n for each file
-r recursively copy a directory, its files and subdirectories

Examples :
cp test.c test.c.old copy the file test.c to a new file test.c.old
cp * ./backup copy all the files in the current directory to a directory called backup

Command 4: du [options] [directories]

Usage :
prints the disk usage of the directory specified or present directory if not specified.

Flags :
-a print usage for all files not just subdirectories
-s printf on the grand total for cache named directory (i.e. silent mode)
-k print disk usage in K bytes not blocks

Examples :
du -ks print the total disk usage for the current directory

Command 5: find pathname(s) condition(s)

Usage :
Used to find files, find has numerous uses dependant upon the conditions set in the command line

Flags :
-exec command{} execute a unix command on finding a file
-name find a file with a specific name
-ok same as exec but prompts for y / n

Examples :
find ./ -name "*.c" finds all files with a .c extention
find ./ -name "*.o" -ok {} \;

Command 6: grep [options] [regexp] [files]

Usage :
search one or more files for lines that match the regular expression regexp

Flags :
-c print out a count of matched lines
-i ignore case

(c) J.P. Macey 2005 30

APPENDIX A. UNIX COMMANDS

-l list file names not matched lines
-s suppress error messages

Examples :
grep main * find all files which contain the phrase main
grep -i myFunction *.c search for the text myFunction ignoring case in all files in the current directory

Command 7: gunzip [options] filename.gz

Usage :
unzip a GNU zipped file

Flags :
-l list contents but dont unzip file

Examples :
gunzip test.gz unzip the file test.gz

Command 8: gzip [options] filename.gz

Usage :
create a GNU zipped file

Flags :
-# 1 -9 compression ration 1 == fast 9 == best compression

Examples :
gzip -9 test.tar compress the file test.tar

Command 9: head [-n] [files]

Usage :
print the first n lines of a file

Flags :
-n number of lines to print

Examples :
head -n1 /etc/* prints the first line of every file in /etc

Command 10: lp / lpr [options] files

Usage :
sends files to print spooler

Flags :
-P [name] specifies the name of the printer
-#n number of copies to print

Examples :
lpr -P DrEvil notes.ps will print the file notes.ps

(c) J.P. Macey 2005 31

APPENDIX A. UNIX COMMANDS

Command 11: ls [options] [names]

Usage :
List information obout files - current directory is used by default

Flags :
-l list in long format
-a show all files
-R list subdirectories recursively
-c list by file creation / modification time
-d show directories

Examples :
ls -al list all files in a directory
ls -lR list all files including subdirectories
ls -ld /bin /etc list the status of directories /bin and /etc
ls *.c list all of the .c files in the current directory

Command 12: mkdir [options] directories

Usage :
make a directory(s)

Flags :
-m mode used to set the access mode for the new directory
-p create parent directories as needed

Examples :
mkdir test creates a directory called test
mkdir -p /test/d1/old creates the whole directory structure
mkdir -m 700 test creates a directory called test with rwx—— permissions (see chmod for more details on
permissions

Command 13: more [options] files

Usage :
Displays the named files in the console one screen at a time

Flags :
use the space key to scroll pages
PgUP moves up
PgDn moves down
q exits

Examples :
more /etc/passwd displays the contents of the /etc/passwd file

Command 14: mv [options] sources target

Usage :

(c) J.P. Macey 2005 32

APPENDIX A. UNIX COMMANDS

mv is used to move or rename files.

Flags :
-i interactive mode prompt user y/n
-f force move even if target file exists

Examples :
mv file1.c file2.c renames file1.c file2.c
mv * ./backup moves all files to the backup directory
mv mydir myolddir rename a directory for mydir to myolddir

Command 15: pwd

Usage :
print working directory

Flags :
no flags

Examples :
pwd will print the current directory within the shell

Command 16: rm [options] files

Usage :
delete on or more files.

Flags :
-f force removal
-i interactive mode prompt y/n
-r recurse subdirectories

Examples :
rm *.c remove all c files from the current directory
rm -rf mydir remove contents of mydir as well as the directoryitself
rm -rf * remove every thing in the current directory downward

Command 17: rmdir [options] directories

Usage :
remove directory

Flags :
-P recurse subdirectories
-s suppress standard error messages

Examples :
rmdir temp removes the temp directory

Command 18: tar [options] files

Usage :

(c) J.P. Macey 2005 33

APPENDIX A. UNIX COMMANDS

create a tape archive (or a file in the current directory)

Flags :
v verbose mode
f specify file name and do not look for tape drive
c create a tape archive (tar file)
x extract an existing tar file

Examples :
tar cfv mydir.tar ./mydir/* create a tar file of the directorymydir called mydir.tar
tar vfx mydir.tar extracts the contents of the tar file mydir.tar

(c) J.P. Macey 2005 34

Appendix B

DOS to Unix translation

To DOS Unix
display a list of files dir ls

dir /w ls -l
display contents of a file type cat <filename>

more <filename>
display contents of a file with pausetype <filename> | more more <filename>
copy file copy <src> <dest> cp <src> <dest>
find string in file find (f)grep “string” <filename>
compare files comp diff <file1> <file2>
rename files rename or rn mv <f1> <f2>
delete file erase or del rm <filename>
remove directories rmdir or df rmdir <dirname>
change file protection attrib chmod [flags] <filename>
create directories mkdir or md mkdir <dirname>
change working directory chdir or cd cd <dirname>
get help help man <topic>
display date,time date time date
display free disk space chkdsk df
print file print lpr <filename>

35

Index

/, 15
>, 13, 14
», 13, 14
&, 7, 13

Access control, 16
aliases, 6
attributes, 16, 17

bash, 3, 5, 7, 8
bashrc, 6
bg, 7
bunzip2, 25
bzip2, 24, 25

cat, 13, 14, 35
cd, 18, 19, 22, 29, 35
chgrp, 18, 19
chmod, 17, 18, 29, 35
chown, 18, 19
clear, 8
compress, 24
cp, 30, 35
ctrl+c, 7
ctrl+z, 7

date, 35
df, 21, 35
diff, 35
Directory, 2, 15
du, 21, 30

file, 21
File name completion, 4
filename completion, 4
find, 21, 30
flags, 11

grep, 11, 13, 21, 30
gunzip, 24, 31
gzip, 24, 31

head, 31
History, 4
home directory, 6
hostname, 10

id, 9

kill, 7, 10, 12, 13

ln, 22
lp, 31
lpr, 35
ls, 16–18, 32, 35

man, 8, 35
mkdir, 19, 20, 22, 32, 35
more, 4, 8, 11, 13, 32, 35
mv, 20, 32, 35

netstat, 27

passwd, 14
pgrep, 11, 12
pid, 10, 12, 13
ping, 27
pkill, 13
Posix, 1
ps, 10–13
pwd, 10, 18, 19, 33

reset, 8
rm, 6, 19, 20, 33, 35
rmdir, 19, 33, 35
root, 2, 10, 15, 17–19

scp, 28
Shell, 3
shell, 6
signal, 12
ssh, 27
Symbolic links, 21

tar, 22–24, 26, 33
telnet, 3
tgz, 26
touch, 4, 20, 22

umask, 18
unalias, 7

who, 10
wildcards, 20

36

	1 Introduction to Unix
	1.1 Reasons for the success of Unix
	1.1.1 Portable Operating System Interface (POSIX)

	1.2 Login
	1.2.1 The super user (root)
	1.2.2 Other System accounts
	1.2.3 User Accounts
	1.2.4 Home Directory

	2 The Unix Shell
	2.1 Different Unix Shells
	2.2 Using the Shell (bash)
	2.2.1 File Name Completion
	2.2.2 History

	2.3 Shell examples
	2.4 Changing the bash prompt
	2.4.1 Creating a default prompt

	2.5 Aliasing commands
	2.5.1 Making aliases permanent
	2.5.2 unalias
	2.5.3 dos to unix alias

	2.6 ctrl+z and bg
	2.7 ctrl +c stopping processes
	2.8 Shell movement commands
	2.8.1 clear and reset

	2.9 Getting Help
	2.9.1 Man page sections

	2.10 Where am I? and Who am I?
	2.11 System Processes
	2.11.1 Listing processes
	2.11.2 Killing processes
	2.11.3 more, cat and indirection
	2.11.4 Using cat

	2.12 Changing passwords

	3 The Unix File system
	3.1 Studio file system structure
	3.2 File permissions
	3.2.1 The file type
	3.2.2 Unix file access control
	3.2.3 Other file attributes

	3.3 umask
	3.4 File system navigation
	3.4.1 Making directories
	3.4.2 Moving and re-naming files

	3.5 File utilities
	3.5.1 Finding files and text within files
	3.5.2 Symbolic links

	3.6 Creating archives using tar
	3.6.1 tar command line options
	3.6.2 creating a tar file
	3.6.3 Viewing the contents of a tar file
	3.6.4 adding to a tar file
	3.6.5 Extracting a tar archive
	3.6.6 Updating a tar file

	3.7 Compressing files
	3.7.1 compress
	3.7.2 gzip / gunzip
	3.7.3 bzip2 / bunzip2
	3.7.4 .tgz files

	4 Unix networking
	4.1 Exploring a network
	4.1.1 Netstat

	4.2 Remote login with ssh
	4.3 Copying files to different machine (scp)

	A Unix Commands
	B DOS to Unix translation

